
A Hybrid Web Server Architecture for e-Commerce Applications

David Carrera, Vicenç Beltran, Jordi Torres and Eduard Ayguadé
{dcarrera, vbeltran, torres, eduard}@ac.upc.es

European Center for Parallelism of Barcelona (CEPBA)
Computer Architecture Department, Technical University of Catalonia (UPC)

C/ Jordi Girona 1-3, Campus Nord UPC, Mòdul C6, E-08034
Barcelona (Spain)

Abstract

The performance of an e-commerce applica-
tion can be measured according to technical metrics
but also following business indicators. The revenue ob-
tained by a commercial web application is directly
related to the amount of clients that complete busi-
ness transactions. In technical terms, a business
transaction is completed when a web client success-
fully finishes a browsing session. In this paper we
introduce a novel web server architecture that com-
bines the best aspects of both the multithreaded and
the event-driven architectures, the two major exist-
ing alternatives, to create a server model that offers an
improved performance in terms of user session com-
pletions without loosing the natural ease of program-
ming characteristic of the multithreading paradigm.
We describe the implementation of this architec-
ture on the Tomcat 5.5 server and evaluate its perfor-
mance. The obtained results demonstrate the feasibility
of the hybrid architecture and the performance bene-
fits that this model introduces for e-commerce applica-
tions.

1. Introduction

Most e-commerce applications are distributed appli-
cations based on the well-known client/server paradigm
that reside mostly in an application server and that are
usually accessed by a remote thin web client. The com-
munication protocol between the server and the client is
the Hypertext Transfer Protocol (HTTP), which in the
server side is parsed and processed by a component of
the application server that is commonly known as the
web container. Most generally, a web container can be

considered as a web server that can support some lan-
guage extensions to create more flexible web applica-
tions.

The performance of an e-commerce applica-
tion can be measured in technical terms or follow-
ing business indicators (see [8] for further discus-
sion on this topic). Usually, the technical measurement
units for a web server are replies per second (through-
put) and the response time. In contrast, most perfor-
mance metrics based on business indicators can be
reduced to one: profit. The revenues a website can gen-
erate are directly related to the amount of commer-
cial transactions the website can complete. In gen-
eral, one commercial transaction is completed when
user browsing session successfully finishes. There-
fore, the web container architectures must be designed
to obtain a high performance in user sessions units in or-
der to be on the side of the interests of e-commerce
applications.

The architectural design of most currently exist-
ing web containers follow the multithreading paradigm
(Apache and Tomcat [7] are widely extended exam-
ples) because it leads to a natural ease of programming
and simplifies the development of the web container
logic. Unfortunately, this model is not especially indi-
cated to obtain a high performance in terms of user ses-
sion completions. Alternatively, an event-driven model
(used in Flash[10] and in the SEDA[11] architec-
ture) can be adopted to develop a web server con-
tainer. This model solves some of the problems present
in the multithreaded architecture but transforms the de-
velopment of the web container into a hard task.

In this paper we introduce a new hybrid web server
architecture that exploits the best of each one of the dis-
cussed server architectures. With this hybrid architec-
ture, an event-driven model is applied to receive the in-
coming client requests. When a request is received, it is



serviced following a multithreaded programming model,
with the resulting simplification of the web container de-
velopment associated to the multithreading paradigm.
When the request processing is completed, the event-
driven model is applied again to wait for the client to
issue new requests. With this, the best of each model is
combined and, as it is discusses in following sections,
the performance of the server is remarkably increased in
terms of user session completions.

The rest of the paper is structured as follows: sec-
tion 2 discusses the characteristics of the two architec-
tures involved in the creation of a hybrid web server,
section 3 describes the implementation details of the hy-
brid web server evaluated on this paper, later, in section
4, we present the execution environment where the ex-
perimental results presented in this work were obtained.
Finally, section 5 presents the experimental results ob-
tained in the evaluation of the hybrid web server and
section 6 gives some concluding remarks and discusses
some of the future work lines derived from this work.

2. Web server architectures

There are multiple architectural options for a web
server design, depending on the concurrency program-
ming model chosen for the implementation. The two
major alternatives are the multithreaded model and the
event-driven model. In both models, the work tasks to
be performed by the server are divided into work assign-
ments that are assumed each one by a thread (a worker
thread). If a multithreaded model is chosen, the unit of
work that can be assigned to a worker thread is a client
connection, which is achieved by creating a virtual as-
sociation between the thread and the client connection
that is not broken until the connection is closed. Alter-
natively, in an event driven model the work assignment
unit is a client request, so there is no real association be-
tween a server thread and a client.

The multithreaded programming model leads to a
very easy and natural way of programming a web server.
The association of each thread with a client connec-
tion results in a comprehensive thread lifecycle, started
with the arrival of a client connection request and fin-
ished with the connection close. This model is espe-
cially appropriate for short-lived client connections and
with low inactivity periods, which is the scenario created
by the use of non persistent HTTP/1.0 connections. A
pure multithreaded web server architecture is generally
composed by an acceptor thread and a pool of worker
threads. The acceptor thread is in charge of accepting
new incoming connections, after what each established
connection is assigned to one thread of the workers pool,
which will be responsible of processing all the requests

issued by the corresponding web client.

The introduction of connection persistence in the
HTTP protocol, already in the 1.0 version of the pro-
tocol but mainly with the arrival of HTTP/1.1, resulted
in a dramatic performance impact for the existing mul-
tithreaded web servers. Persistent connections, which
means connections that are kept alive by the client be-
tween two successive HTTP requests that in turn can be
separated in time by several seconds of inactivity (think
times), cause that many server threads can be retained by
clients even when no requests are being issued and the
thread keeps in idle state. The use of blocking I/O oper-
ations on the sockets is the cause of this performance
degradation scenario. The situation can be solved in-
creasing the number of threads available (which in turn
results in a contention increase in the shared resources
of the server that require exclusive access) or introduc-
ing an inactivity timeout for the established connections,
that can be reduced as the server load is increased. When
a server is put under a severe load, the effect of apply-
ing a shortened inactivity timeout to the clients lead to
a virtual conversion of the HTTP/1.1 protocol into the
older HTTP/1.0, with the consequent loss of the perfor-
mance effects of the connection persistence.

In this model, the effect of closing client connections
to free worker threads reduces the probability for a client
to complete a session to nearly zero. It is especially im-
portant when the server is under overload conditions,
where the inactivity timeout is dynamically decreased
to the minimum possible in order to free worker threads
as quickly as possible, which provokes that all the estab-
lished connections are closed during think times. This
causes a higher competition among clients trying to es-
tablish a connection with the server. If we extend it to
the length of a user session, we obtain that the proba-
bility of finishing it successfully under this architecture
is still much lower than the probability of establishing
each one of the connections it is composed of, driving
the server to obtain a really low performance in terms of
session completions. This situation can be alleviated in-
creasing the number of worker threads available in the
server, but this measure also produces an important in-
crease in the internal web container contention with the
corresponding performance slowdown.

On the other hand, the event-driven architecture com-
pletely eliminates the use of blocking I/O operations for
the worker threads, reducing their idle times to the min-
imum because no I/O operations are performed for a
socket if no data is already available on it to be read.
With this model, maintaining a big amount of clients
connected to the server does not represent a problem
because one thread will never be blocked waiting a
client request. With this, the model detaches threads



from client connections, and only associates threads
to client requests, considering them as an independent
work units. An example of web server based on this
model is described in [10], and a general evaluation of
the architecture can be found in [3].

In an event driven architecture, one thread is in charge
of accepting new incoming connections. When the con-
nection is accepted, the corresponding socket channel
is registered in a channel selector where another thread
(the request dispatcher) will wait for socket activity.
Worker threads are only awakened when a client re-
quest is already available in the socket. When the re-
quest is completely processed and the reply has been
successfully issued, the worker thread registers again the
socket channel in the selector and gets free to be as-
signed to new received client requests. This operation
model avoids worker threads to keep blocked in socket
read operations during client think times and eliminates
the need of introducing connection inactivity timeouts
and their associated problems.

A remarkable characteristic of the event-driven archi-
tectures is that the number of active clients connected to
the server is unbounded, so an admission control[4] pol-
icy must be implemented. Additionally, as the number of
worker threads can be very low (one should be enough)
the contention inside the web container can be reduce to
the minimum.

Hybrid architecture

In this paper we propose a hybrid architecture that
can take benefit of the strong points of both discussed
architectures, the multithreaded and the event driven.
In this hybrid architecture, the operation model of the
event-driven architecture is used for the assignment of
client requests to worker threads (instead of client con-
nections) and the multithreaded model is used for the
processing and service of client requests, where the
worker threads will perform blocking I/O operations
when required. This architecture can be used to decouple
the management of active connections from the request
processing and servicing activity of the worker threads.
With this, the web container logic can be implemented
following the multithreaded natural programming model
and the management of connections can be done with
the highest possible performance, without blocking I/O
operations and reaching a maximum overlapping of the
client think times with the processing of requests.

In this architecture the acceptor thread role is main-
tained as well as the request dispatcher role from the
pure event-driven model and the worker thread pool
(performing blocking I/O operations when necessary)
from the pure multithreaded design. This makes possi-

ble for the hybrid model to avoid the need of closing
connections to free worker threads without renouncing
to the multithreading paradigm. In consequence, the hy-
brid architecture makes a better use of the characteristics
introduced to the HTTP protocol in the 1.1 version, such
as connection persistence, with the corresponding reduc-
tion in the number of client reconnections (and the cor-
responding bandwidth save). Additionally, and as it has
been discussed for the event-driven architectures, some
kind of admission control policy must be implemented
in the server in order to maintain the system in an ac-
ceptable load level.

3. Hybrid architecture implementation

To validate the proposed hybrid architecture we
have implemented it inside of Tomcat 5.5, a widely ex-
tended web container. Tomcat 5 is built in the top
of the Java platform, which provides non block-
ing I/O facilities across different operating systems
in its NIO (Non Blocking I/O) API. The implemen-
tation has been done modifying a pluggable compo-
nent of the server generally named connector which is
the server component in charge of handling communi-
cations with the client

Tomcat is an open-source servlet container developed
under the Apache license. Its primary goal is to serve
as a reference implementation of the Sun Servlet and
JSP specifications, and to be a quality production servlet
container. For the scope of this paper, two major com-
ponents of Tomcat are considered: Coyote and Catalina.
Coyote is the default Tomcat connector and deals with
client connection request parsing and thread pooling.
Catalina is a servlet container, and implements most of
the web container logic. The implementation of the hy-
brid server architecture in Tomcat only affects Coyote.

Coyote follows a connection service schema where,
at a given time, one thread (an HttpProcessor) is respon-
sible of accepting a new incoming connection on the
server listening port and assigning to it a socket struc-
ture. From this point, this HttpProcessor will be
responsible of attending and parsing the received re-
quests through the persistent connection established
with the client, while another HttpProcessor will con-
tinue accepting new connections. HttpProcessors are
commonly chosen from a pool of threads in order to
avoid thread creation overheads. A connection time-
out is programmed to close the connection if no more re-
quests are received in a period of time. When a request
is parsed, Coyote requires Catalina to process the re-
quest and to send the corresponding response to the
client.

The implementation of the hybrid architecture



changes the original Coyote threading and I/O model.
One thread is in charge of accepting and register-
ing, through a NIO selector, new incoming connec-
tions. When a registered connection becomes active
(i.e. it has data available to read so a read opera-
tion over the socket will not be blocking), it is dis-
patched by the selector thread to small pool of HttpPro-
cessor threads. Each HttpProcessor services only one
request for each assigned active connection. The re-
quest is read and parsed, always without blocking the
thread, and it is send to Catalina who processes the re-
quest. When the request is finished the connection
is re-registered on the selector and the thread is sent
back to the pool until a new active connection is as-
signed to it.

This implementation presents a major draw-
back when the system becomes overloaded because in
this situation the acceptor thread allows new connec-
tions to enter the server faster than Catalina can ser-
vice them, what results in a quick growth of the number
of concurrent connections, which in turn causes a se-
vere response time degradation. In consequence the
number of client timeouts grows an the throughput de-
creases. To avoid this problem we have introduced
a simple but effective admission control mecha-
nism (similar to the backpressure technique described
in [11]), that prevents the acceptor thread from ac-
cepting new connections while all HttpProcessors are
busy.

4. Testing environment

The hardware platform for the experiments presented
in this paper is composed of a 4-way Intel Xeon 1.4 GHz
with 2GB RAM to run the web servers and a 2-way Intel
XEON 2.4 GHz with 2 GB RAM to run the benchmark
clients. For the benchmark applications that require the
use of a database server, a 2-way Intel XEON 2.4 GHz
with 2 GB RAM was used to run MySQL v4.0.18, with
the MM.MySQL v3.0.8 JDBC driver. All the machines
were running a Linux 2.6 kernel, and were connected
through a switched Gbit network. The SDK 1.5 from
Sun was used to develop and run the web servers.

The servers were tested in two different scenarios,
one to evaluate the server performance for a static con-
tent application and another for a dynamic content en-
vironment. The workload for the experiments was gen-
erated using a workload generator and web performance
measurement tool named Httperf[9]. This tool allows the
creation of a continuous flow of HTTP requests issued
from one or more client machines and processed by one
server machine: the SUT (System Under Test). The con-
figuration parameters of the benchmarking tool used for

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800

re
pl

ie
s/

s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Reply rate.

Hybrid
Multithreaded

Figure 1. Throughput comparison under
an static content workload

the experiments presented in this paper were set to create
a realistic workload, with non-uniform reply sizes, and
to sustain a continuous load on the server. One of the pa-
rameters of the tool represents the number of clients/s,
i.e.the load. Each emulated client opens a session with
the server. The session remains alive for a period of time,
called session time, at the end of which the connection
is closed. Each session is a persistent HTTP connection
with the server, used by the client to repeatedly send re-
quests, some of them pipelined. The requests issued by
httperf were extracted from the surge[2] workload gen-
erator for the static content scenario and from the RUBiS
[1] application for the dynamic content environment.

A static content application is characterized by the

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800

m
s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Response time.

Hybrid
Multithreaded

Figure 2. Response time under an static
content workload



0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 100 200 300 400 500 600 700 800

re
se

ts

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Connection reset.

Hybrid
Multithreaded

Figure 3. Number of connections closed
by the server by a timeout expiration

short length of the user sessions as well as by the low
computational cost of each request to be serviced. This
is the scenario reproduced with the Surge[2] workload
generator for these experiments. The request distribu-
tion produced by Surge is based on the observation of
some real web server logs, from where it was extracted a
data distribution model of the observed workload. This
fact guaranties than the used workload for the experi-
ments follows a realistic load distribution.

A dynamic content application is characterized by the
long length of the user sessions (an average of 300 re-
quests per session in front of the 6 requests per session
for the static workload) as well as by the high computa-

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

re
pl

ie
s/

s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Reply rate.

Hybrid.txt.csv Tomcat.txt.csv

Figure 4. Reply throughput comparison
under a dynamic content workload

tional cost of each request to be serviced (including em-
bedded requests to external servers, such as databases).
For our experiments, the chosen dynamic content bench-
mark application was RUBiS[1] (Rice University Bid-
ding System), in its 1.4 servlets version. RUBiS imple-
ments the core functionality of an auction site: selling,
browsing and bidding. The workload distribution gener-
ated by Httperf was extracted from the RUBiS client em-
ulator, which uses a Markov model to determine which
subsequent link from the response to follow. Each emu-
lated client waits for an amount of time, before initiating
the next interaction, emulating on this way the ”thinking
times observed in real clients. Httperf allows also con-
figuring a client timeout. If this timeout is elapsed and
no reply has been received from the server, the current
session is discarded.

5. Experimental results

In our experiments we evaluate which are the perfor-
mance characteristics for each web server architecture,
the original multithreaded Tomcat and our hybrid Tom-
cat implementation, for the two different scenarios al-
ready introduced in section 4: an static content applica-
tion (Surge) and a dynamic content one (RUBiS). For
the experiments, we configured Httperf setting the client
timeout value to 10 seconds, and used the configuration
described in section 4. Each individual benchmark ex-
ecution had a fixed duration of 30 minutes for the dy-
namic content tests and 10 minutes for the static content
experiments.

5.1. Static content

The first performance metric evaluated for this sce-
nario is the obtained throughput for each architectural
design, measured in replies per second. The results for
both architectures are shown in figure 1. In the figures, it
can be seen that the multithreaded architecture obtains a
slightly lower performance than the hybrid one in terms
of throughput, but the results are so close that they can
be considered equivalent. It is remarkable that the same
throughput is obtained by the hybrid architecture with a
thread pool size of only 10 threads, while in the multi-
threaded architecture requires 500 threads to obtain the
same result.

If we move from the throughput to the response time
observed for each implementation, we can see that the
hybrid architecture offers a clearly better result than the
multithreaded one, as it can be seen in figure 2. When the
system is not saturated (under a load equivalent to 300
new clients per second), the response time for the multi-
threaded server is slightly better than for the hybrid de-



sign, possibly because of the overhead introduced by the
extra operations that the hybrid server must do to regis-
ter the sockets in the selector and to switch them be-
tween blocking and non-blocking mode when moving
from multithreaded to the event-driven and reverse. This
effect would be dispelled in a WAN environment, where
the latencies are much higher than in the Gbit LAN used
for the experiments. When the system is saturated, be-
yond 300 new clients/s, the benefits of the hybrid ar-
chitecture turn up and the response time reduction with
respect to the multithreaded version of the server is of
about a 50%, moving from a 300 ms average response
time for the multithreaded architecture to a 150 ms re-
sponse time for the hybrid design.

Another interesting difference between the behavior
of the two studied architectures can be observed in figure
3. The figure shows the amount of connections that have
been closed by the server because of a too long client in-
activity period, causing the server timeout to expire and
obligating the client to be reconnected to resume its ses-
sion. As it can be seen, while the hybrid architecture is
not producing this kind of situation (zero errors are de-
tected by the benchmark client), a high number of errors
are detected for the multithreaded architecture. This sit-
uation can be explained by the need of the multithreaded
design to free worker threads to make them available for
new incoming connections. This causes that the client
inactivity periods must be avoided by closing the con-
nection and requiring the client to resume its session
with a new connection establishment when necessary.
In the hybrid architecture, that assigns client requests as
work units to the worker threads instead of client con-
nections, this situation is naturally avoided and the cost
of keeping a client connection event in periods of inac-
tivity is equivalent to the cost of keeping the connec-
tion socket opened. The effect of this characteristic for
the hybrid architecture is that all the reconnections are
eliminated.

5.2. Dynamic content

Dynamic content applications implement a higher
complexity and more developed semantics than static
ones, which is usually translated into longer user ses-
sions and involves that the common performance met-
rics are partially redefined in terms of business concepts.
This means that e-commerce applications are more con-
cerned about sales or business transactions than about
more technical metrics such as the throughput or the re-
sponse time offered by the server.

For this experiment, we consider that one of the most
important metrics for an auction website (the scenario
reproduced by RUBiS, see section 4 for more details) is

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

se
ss

/s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Session rate.

Hybrid.txt.csv Tomcat.txt.csv

Figure 5. Successfully completed session
rate under a dynamic content workload

the number of user sessions that are completed success-
fully. Each user that can complete its navigation session
represents a potential bid for an item and in consequence
a higher profit for the auction company.

Looking at figure 4, it can be seen that the through-
put offered by both architectural designs is very similar,
although the multithreaded architecture shows a slightly
better performance when the server is saturated.

Looking at the number of sessions completed per sec-
ond, in figure 5, it can be seen that the amount of suc-
cessfully finished sessions reached by the hybrid archi-
tecture is clearly higher than the amount reached by the

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

se
co

nd
s

Number of clients/s

Hybrid vs Multithreaded. Session lifetime 

Hybrid.txt.csv Tomcat.txt.csv

Figure 6. Lifetime comparison for the ses-
sions completed successfully under a dy-
namic content workload



multithreaded design, especially beyond saturation. As
it can be observed, the multithreaded architecture tends
to decrease the number of completed sessions per sec-
ond as the workload intensity is increased. This can be
explained because under a pure multithreaded design the
worker threads are obligated to close the client connec-
tions in order to be freed and rest available for new in-
coming connection requests. This situation, under high
loads, leads to a scenario where the clients whose con-
nections have been closed by the server, start experienc-
ing problems to be reconnected because the amount of
active clients trying to establish a connection is remark-
ably higher than the amount of worker threads disposed
in the server. If this is extended to the amount of con-
nections required to complete a long user session, char-
acteristic of dynamic applications, the probability of be-
ing able to finish the session successfully is reduced to
near zero, as it has already been discussed in section 2.

This explanation to the difference of performance be-
tween the two architectural designs in terms of session
completion is supported by the results shown in figure
6 that indicate that the sessions completed by the mul-
tithreaded server are significantly shorter than the ses-
sions completed by the hybrid server. This explains that
the reply rate for the multithreaded server can be sus-
tained even when the session rate is remarkably reduced
because it proves that the sessions completed by the mul-
tithreaded server are those ones with less requests (the
shorter ones). Completing only short sessions means that
many active clients finishes their sessions unsuccess-
fully, which in turn may result in an important amount
of unsatisfied clients that have received a very poor qual-
ity of service.

6. Conclusions and future work

In this paper we have shown how a web server hybrid
architecture that combines the best of a multithreaded
design with the best of an event-driven model can be
used to obtain a high performance web server, especially
when the throughput is measured in successfully com-
pleted user sessions per second. The proposed imple-
mentation into the Tomcat 5.5 code offers a slightly bet-
ter performance than the original multithreaded Tomcat
server when it is tested for a static content application,
and a remarkable performance increase when it is com-
pared for a dynamic content scenario, where each user
session failure can be put into relation with business rev-
enue losses. Additionally, the natural way of program-
ming introduced by the multithreading paradigm can be
maintained for most of the web container code.

Further research will be done toward the exploitation
of the hybrid architecture benefits in the area of session

based admission control, especially in presence of se-
cure connections (SSL), where the cost of client recon-
nections can result in an enormous performance impact
(see [5] for more details on this topic). The hybrid ar-
chitecture also reduces the complexity of the tuning of a
web container, which is an important step toward the im-
plementation of autonomic servers[6].

Acknowledgments

This work is supported by the Ministry of Sci-
ence and Technology of Spain and the European Union
(FEDER funds) under contract TIN2004-07739-C02-01
and by the CEPBA-IBM Research agreement.

Please visit the Barcelona eDragon Research
Group web page for additional information
http://www.ciri.upc.es/eDragon

References

[1] C. Amza, A. Chanda, E. Cecchet, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Specification and implementation of dynamic web site
benchmarks, 2002.

[2] P. Barford and M. Crovella. Generating representative
web workloads for network and server performance eval-
uation. InMeasurement and Modeling of Computer Sys-
tems, pages 151–160, 1998.

[3] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. Eval-
uating the scalability of java event-driven web servers.
In 2004 International Conference on Parallel Processing
(ICPP’04), pages 134–142, 2004.

[4] H. Chen and P. Mohapatra. Session-based overload con-
trol in qos-aware web servers. InINFOCOM, 2002.

[5] J. Guitart, V. Beltran, D. Carrera, J. Torres, and
E. Ayguad́e. Characterizing secure dynamic web applica-
tions scalability. In19th International Parallel and Dis-
tributed Symposium (IPDPS’05), 2005.

[6] IBM Research. Autonomic computing. See
http://www.research.ibm.com/autonomic.

[7] Jakarta Project. Apache Software Foundation.Tomcat.
See http://jakarta.apache.org/tomcat.

[8] A. Keller and H. Ludwig. Defining and monitoring
service-level agreements for dynamic e-business. In
LISA, pages 189–204, 2002.

[9] D. Mosberger and T. Jin. httperf: A tool for measuring
web server performance. InFirst Workshop on Internet
Server Performance, pages 59—67. ACM, June 1998.

[10] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An ef-
ficient and portable Web server. InProceedings of the
USENIX 1999 Annual Technical Conference, 1999.

[11] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An
architecture for well-conditioned, scalable internet ser-
vices. InSymposium on Operating Systems Principles,
pages 230–243, 2001.


