A Self-Adapting Web Server Architecture:

Towards Higher Performance and Better Utilization

(Part II)

By : Khalid Al-Issa

Advisor Dr. Farag Azzedin

Review

***** Macro vs. Micro Performance

Concurrency through:

- **1.** Asynch. system calls
- 2. Multiple instances of server
- The two original architectures

Agenda

- **1.** Objectives
- **2.** Literature Review
- 3. Issues
- 4. The Self-Adapting Model
- 5. Conclusion

Objectives

1. Survey existing architectures

2. Propose a new model

- Dynamic and flexible
- Utilizes resources better
- Efficient with available system calls
- Provides higher performance

Literature Review

1) Modify other internal aspects

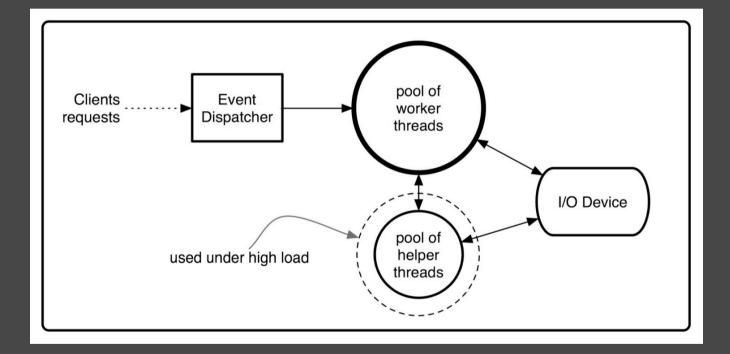
- Increase cache locality (2001)
- Multi-accept (2001, 2004)

Literature Review

2) Hybrid architectures

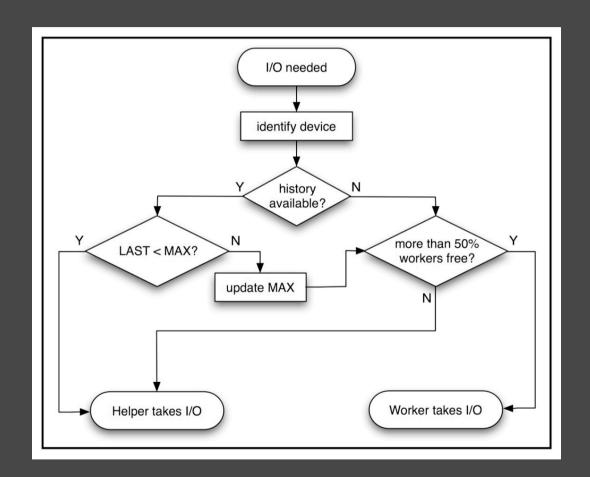
- AMPED (1999)
- SEDA (2001)
- HYBRID (2005)
- SYMPED (2007)

Literature Review


3) Replacement libraries

- Capriccio (2001)
- Lazy Asynchronous I/O (2004)

Issues


- **Still room for improvement**
- Efficiency with available system calls
- Expensive scenarios exist
- Need for adaptability

The Self-Adapting Model

Either worker or helper threads can perform I/O, whichever is less expensive

The Self-Adapting Model

The algorithm for the proposed model

The Self-Adapting Model

- 1) Survey (complete)
- 2) Algorithm (complete)
- 3) Simulation (in progress)
 - Flash (AMPED)
 - Capriccio
 - Hybrid 05
- 4) Evaluation
 - HTTPerf
 - Profiling

Conclusion

Adaptability is needed:

- Opens up the door for new ideas
- Provides flexible operation
- Better utilizes resources
- Provides a more logical scenario
- Can (hopefully) improve performance
- Relax current limitations in system calls