
A Self-Adapting Web Server
Architecture:

Towards Higher Performance and Better Utilization

(Part I)

By : Khalid Al-Issa

Advisor

Dr. Farag Azzedin



Agenda

1. Objectives

2. What is Performance?

3. Improving Performance

4. Performance and I/O

5. Two Original Architectures

6. Need for New Ideas

7. Conclusion



Objectives

1. Define performance

2. Introduce I/O classes

3. Explain the two original approaches

4. Motivate new ideas



What is Performance ?

 Macro-Performance
 Throughput and response time

 Micro-Performance
 Clock per Instruction (CPI)

 Cache miss rate

 I/O handling

 Utilization of resources

“Benchmarking web server architectures: A simulation study on micro performance,” 2002.



Improving Performance

 Enhancing what users perceives
 Ex. Replication

 Pro’s: Simple & provides multiples of throughput

 Con’s : Issues continue to exist

 Enhancing internal operation
 Ex. Scheduling similar computations together

 Pro’s: Much more effective

 Con’s: More work, but is worth that

“SEDA: An Architecture for Well-Conditioned, Scalable Internet Services,” 2001.



Performance and I/O

 Job is to deliver contents
 Pages, images, scripts, database contents …etc

 Can be either cached, or read from disk

 Can’t have everything in cache
 Disk I/O becomes a must

 Concurrency is also a must

 4 classes of disk I/O Blocking Non-blocking

Synch.

Asynch.

Read/Write Read/Write
(O_NONBLOCK)

IO Multiplexing
Select/Poll

AIO

http://www.ibm.com/developerworks/linux/library/l-async/



Two Original Architectures

1) Single-Process Event-Driven (SPED)

 Analogy
 Single instance

 Processing based on events

 Architecture layout



Two Original Architectures

 SPED Pro’s:
 Event-Driven is effective

 Con’s:
 No mature Asynch. I/O built-in libraries

 Too restrictive I/O scenarios



Two Original Architectures

2) Multi-Threaded and Multi-Process
 Differences between the two

 Sharing

 Scheduling

 Analogy

 Architecture layout



Two Original Architectures

 Multi-Threaded Pro’s
 Simple operation

 Easy coding

 Con’s:
 Low utilization (blocking IO, and no events)

 Limited scalability



Need for New Ideas

 Serious limitations in original models

 New models should have:
 Power and availability (Multi-Threaded)

 Effectiveness and high utilization (Event-Driven)



Conclusion

 Concurrency is highly desirable
 Single process with Asynch. IO

 Limitation of Asynch. system calls

 Multiple instances of server (threads)
 Limited scalability and utilization

 There is a need for new models

 Next, we :
 Survey existing models

 Propose a new architecture


