King Fahd University of Petroleum and Minerals

Information and Computer Science Department
ICS 571 Client-Server Programming - Fall 2010 - Assignment # 3 (b)
Assigned: Tuesday Jan. 4, 2010
Due: Tuesday, Jan. 18, 2010
The SMTP E-mail Server

Here are some specific requirements and other important notes about your SMTP e-mail server:

· Your server is relatively simple, and just appends each incoming e-mail message to a file named after the user the mail was intended for. If e-mail was intended for user Ahmed there will be a file called Ahmed in the server's directory containing all of the mail for this user.

· Each user that your server will accept mail for must have a file created for the user before the server accepts mail for that user. Consequently, you will need to create empty files for each user that your server will store mail for.
· Unlike your e-mail client, your e-mail server will not take any command line parameters. It is just started on its own. As part of its initialization, it will have the operating system choose a port number for it, and will print it out to the screen. This way, you will know the port number used by your server, so you can include it in the address used by your e-mail client. After doing this, the server waits for a connection request from your e-mail client.
· When your server receives a connection, it sends a status code and welcome message to the client. Be sure to use a successful status code, or else the client will abort the connection. The choice of text for the welcome message is up to you.
· The server will now receive a HELO request. It should verify that the request was actually HELO, but does not need to check what comes after HELO in the client request. An appropriate status code and phrase should be sent back to the client.
· The server will now receive a MAIL FROM request. It should verify that the request was actually MAIL FROM, but does not need to check what comes after FROM in the client request. An appropriate status code and phrase should again be sent back to the client.

· The server will now receive an RCPT TO request. It should verify that the request was actually RCPT TO, and should also pick the user name out of the address sent along. (You can assume that a correctly structured e-mail address was sent, since your client was the program that sent it.)

Before generating a response, the server should attempt to open the given user's mail file. If this fails because the file does not exist, the incoming message should be rejected by sending back an appropriate status code and message. If the mail box exists and the mail can be accepted, an appropriate response should be sent back.

· The server will now receive a DATA request. It should verify that the request was actually DATA, but does not need to check what comes after DATA in the client request. An appropriate status code and phrase should again be sent back to the client.

· The client now sends the server the message, terminated by a . on a line all by itself. (You can safely assume there will only be one such line, and it will come at the end of the message.) The message will need to be read from the incoming socket and appended to the user's mailbox, including all headers. A single blank line should be used to separate individual messages in the mailbox. The . terminating the message should not be appended to the mailbox. When done, an appropriate status code and message should be sent to the client.

· The client now sends a QUIT command to the server. Once again, the server should send an appropriate status code and phrase back to the client. As mentioned earlier, only one message per connection will be sent. The server can now close its connection.

· With the connection closed, the server should return to accept new connections from additional clients. The server need not process multiple client requests at the same time, but the server should be able to process several client requests consecutively. To terminate the server, the user should press Ctrl-C.
Marks will be given for:

· Application protocol

· Running code

· Comments and Code Quality (Readability, Robustness, Reusability, etc.)

· Architecture

· Quality of Demonstration.

If you fail to provide a running program in your demonstration you will be marked out of 60%.

Place your code in a directory along with a README file describing how to compile and run your program and indicating any special capabilities you have implemented. Your directory should contain a sample initialization file. You can package your code as a single file or break it up into pieces like (main.c workers.c clients.c). Be sure you properly extern shared data if you break your program into separate source files!

Turn-in / Late Policy

Place your code in a directory along with a README file describing how to compile and run your program and indicating any special capabilities you have implemented. Your directory should contain a sample initialization file. To turn in your assignment, create a tarball or a zipfile containing the project directory and email to fazzedin@kfupm.edu.sa with the Subject line: "ICS571: A#3(b) SUBMISSION". The standard late policy applies. Projects can be submitted up to five days late. A 10% penalty will be applied for each day late.

Assignments more than 5 days late will not be accepted.

