King Fahd University of Petroleum and Minerals

Information and Computer Science Department
ICS 571 Client-Server Programming - Fall 2010 - Assignment # 2
Assigned: Sunday, December 12, 2010
Due: Tuesday, December 21, 2010
E-mail client

Purpose of the Assignment

This assignment is designed to test your abilities to implement an e-mail client. For this assignment, you only need to worry about implementing the commands required for basic mail transfer in the SMTP protocol. The commands that you must support are HELO, MAIL, RCPT, DATA, and QUIT. If multiple messages are to be sent, each is sent in a separate connection. Your E-mail client should be able to send e-mail to just about any server on the Internet.

The SMTP E-mail Client

· Your e-mail client will take three parameters on its command line: the address to which mail is to be sent, the subject of the message, and the name of a file containing the body of the e-mail message. The address can be either standard e-mail address in the form user@domain, or in a special form user@host:port. The first form allows your client to send e-mail to regular servers, whereas the second form allows you to explicitly identify where your SMTP e-mail server can be found. The subject can be any text; it is up to the user of the client to ensure that multi-word subjects are enclosed within quotation marks so the shell interprets the subject as a single parameter. The file name parameter simply contains the name of a text file that will be sent as the main content of the e-mail message. The file can be created using any standard editor, and your client may assume that it is 7-bit ASCII text.

For example, suppose I wanted to send e-mail to fazzedin@kfupm.edu.sa, with the subject "This is a test", and with the message contained within the file message.txt. Your client would be invoked as:

mail_client fazzedin@kfupm.edu.sa "This is a test" message.txt

· Your client will need to establish a TCP connection to the appropriate mail server to deliver the e-mail. If the e-mail address given to your client as its first parameter was in the form user@host:port, this will be fairly simple, as the precise host and port to contact can be extracted from the address itself.
· Once a connection is established, your client will receive a welcome message from the server. If the status code received from the server does not begin with a 2, you can assume an error occurred. In this case, your client should print out the status code and status phrase received from the server, close its connection, and promptly exit.

· Your client will now identify itself and its host using the standard HELO request. To find the name of the host that the client is executing on, use the standard function gethostname().

In return to its HELO request, the client will receive a reply from the server. If the code received from the server does not begin with a 2, you can assume an error occurred. In this case, your client should print out the status code and status phrase received from the server, close its connection, and promptly exit.

· Upon receiving a response to the HELO request, your client will send a MAIL FROM request, indicating you as the sender of the message. To indicate yourself as the sender, you need to send your e-mail address, consisting of your user name, and the name of the domain (or network) that you are in.

For example, in UNIX, there are many ways to retrieve your user name in a UNIX environment. One is to retrieve the USER environment variable using the getenv() function. Another is to use some combination of the getuid() and getpwuid() functions.
In return to its MAIL FROM request, the client will receive a reply from the server. If the code received from the server does not begin with a 2, you can assume an error occurred. In this case, your client should print out the status code and status phrase received from the server, close its connection, and promptly exit.

· Once the response to the MAIL FROM request is received, you must now use an RCPT TO command to indicate the recipient of your message. This is simply going to be the e-mail address given as the first parameter to your client. (If the address was in the form user@host:port, be sure to strip off the :port part first!)

In return to its RCPT TO request, the client will receive a reply from the server. If the code received from the server does not begin with a 2, you can assume an error occurred. In this case, your client should print out the status code and status phrase received from the server, close its connection, and promptly exit.

· Once the response to the RCPT TO command is received, you can now send the DATA command to indicate you want to send the message. In return to its DATA request, the client will receive a reply from the server. If the code received from the server does not begin with a 2 or a 3, you can assume an error occurred. In this case, your client should print out the status code and status phrase received from the server, close its connection, and promptly exit.

· Once you receive the response to the DATA request, you can send the message. This will consist of sending both some standard headers and the message body as well.

You will need to include at least the basic headers, To:, From:, Subject:, and Date:. The e-mail addresses to use in the To: and From: headers were previously sent in the RCPT TO and MAIL FROM requests, and can be reused here. (Some mail programs will include your full name in the from line, but you do not have to with this assignment. If you REALLY want to, just ask, and I can tell you how to get this too!) To get the subject for the Subject: line, use the subject given as the second parameter to your mail client. To get the current time and date as a string, you should use functions like strftime() or cftime().You are free to add other header lines, if you want. After the last header line, be sure to include a blank line to separate the headers from the message body.

The message body is simply read in from the file named as the third parameter to your mail client. As it is read in from the file, it can now safely be copied down the socket to the mail server. Once you have sent the message, do not forget to indicate to the server that you are done sending by sending a . on a line by itself. You can safely assume that no one will be so malicious as to include a line with a . all by itself in the file sent above.

· At this point, your client is about ready to wrap up. It now issues a QUIT request, awaits its reply, and closes its connection to the server. Your client can now exit.

Once again, if the client receives a code that does not begin with 2 in response to the message submission or its QUIT request, your client should print the status code and status phrase, and exit.

Hints

· At many points in the client and server, you will need to do things to parse text and break it into its various pieces. There are several simple C functions to help you do this. Be sure to look into the functions strchr(), strstr(), and strtok().

· At many points in the client and server, you will also need to compose strings out of other data. You are likely familiar with functions like strcat() and strcpy() for string manipulation, but you should also look into the sprintf() function. This allows you to use printf() style formatting to produce strings. Definitely a very useful function!

· Do not forget that in most Internet protocols like SMTP, protocol messages that need a line terminator want a carriage return and a line feed. For example, the . terminating a message being sent should be surrounded by both a carriage return and a line feed. To do this in C, you need to use \r\n instead of just \n.

· To test out the functionality of your e-mail client, simply send e-mail to valid e-mail addresses and verify the results.

As an important note, marks will be allocated for code style. This includes appropriate use of comments and indentation for readability, plus good naming conventions for variables, constants, and functions. Your code should also be well structured (i.e. not all in the main function).

Please remember to test your program as well, since marks will be given for correctness! You should be able to send a variety of different test messages and respond to error conditions appropriately.
Marks will be given for:

· Application protocol

· Running code

· Comments and Code Quality (Readability, Robustness, Reusability, etc.)

· Architecture

· Quality of Demonstration.

If you fail to provide a running program in your demonstration you will be marked out of 60%.

Place your code in a directory along with a README file describing how to compile and run your program and indicating any special capabilities you have implemented. Your directory should contain a sample initialization file. You can package your code as a single file or break it up into pieces like (main.c workers.c clients.c). Be sure you properly extern shared data if you break your program into separate source files!

Turn-in / Late Policy

Place your code in a directory along with a README file describing how to compile and run your program and indicating any special capabilities you have implemented. Your directory should contain a sample initialization file. To turn in your assignment, create a tarball or a zipfile containing the project directory and email to fazzedin@kfupm.edu.sa with the Subject line: "ICS571: A#2 SUBMISSION". The standard late policy applies. Projects can be submitted up to five days late. A 10% penalty will be applied for each day late.

Assignments more than 5 days late will not be accepted.

