
Divide and Conquer 

4. Divide and Conquer 

In this chapter, we explore the divide-and-conquer strategy for algorithm design. The divide-and-conquer 
strategy has its roots from the colonial-wars tactics employed by army generals to defeat their opposing armies. 
To apply the strategy, we divide an instance of a problem into two (or more) smaller-sized instances whose 
solutions will be combined to obtain the solution to the original problem. The smaller instances should be 
instances of the original problem, and they are solved by repeated application of divide-and-combine, unless the 
instance is small enough where a direct solution is possible.  
 
A divide-and-conquer algorithm is readily expressible into a recursive procedure, as shown by Listing  4.1. The 
general case consists of three steps, which are executed in sequence:  divide,  conquer, and combine. 
 

 
Solution-Form Solve(P,n) 
{  if n is small enough then solve P directly and return the solution; 
  else  
  {  // 1. Divide Step 
    Divide P into two subproblems P1 and P2 of size m1 and m2 each, where m1 ≈ m2 ≈ n/2 
     // 2. Conquer Step 
    S1 ← Solve(P1,m1);  
    S2 ← Solve(P2,m1); 
     // 3. Combine step 
     S ← Combine(S1,S2); 
     return S; 
   } 
}  

 
Listing  4.1 A generic structure of a divide-and-conquer algorithm.  



 

 

4.1 Solving Recurrence Equations  
 
The use of recurrence equations is fundamental to the analysis of recursive algorithms. A recurrence equation is 
a function that expresses the running time for an input of size n in terms of some expression on n and the same 
function of inputs of smaller sizes. We let T(n) denote the (best, worst, or average) case running time, or the 
number of barometer operations, on inputs of size n. If n is sufficiently small (i.e.,  n ≤ n0 for some positive 
constant n0), then the problem is trivial, and no further division is necessary.  In this case, the solution runs in 
constant time: T(n) = c. This is the point at which the recursion “bottoms out”. If n > n0 , we divide the problem 
into a subproblems, each of size n/b, where a ≥ 1 and b > 1. Suppose our algorithm takes time D(n) to divide the 
original problem instance into subinstances, and time C(n) to combine the solutions to these instances into a 
solution to the original problem instance. Thus, we obtain the following  recurrence equation for T(n): 
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Here are some examples (in the examples, T(n) denotes the running time on an input of size n): 
 
Mergesort: To sort an array of size n, we sort the left half, sort the right half, and then merge the two halves. We 
can do the merge in linear time (i.e.,  cn for some positive constant c). So, if T(n) denotes the running time on an 
input of size n, we end up with the recurrence T(n) = 2T(n/2) + cn. This can also be expressed as T(n) = 2T(n/2) 
+ O(n). 
 
Selection Sort: In selection sort, we find the smallest element in the input sequence and swap with the leftmost 
element and then recursively sort the remainder (less the leftmost element) of the sequence. This leads to the 
recurrence T(n) = cn + T(n−1). 
 
Polynomial Multiplication: The straightforward divide-and-conquer algorithm to multiply two polynomials of 
degree n leads to T(n) = 4T(n/2)+cn. However, a clever rearrangemt of the terms (see Section  4.6) improves this 
to T(n) = 3T(n/2)+cn. 
 

4.1.1 The Substitution Method 
 
One of the simplest techniques to find a closed (nonrecursive) formula for a given recurrence T(n) is to use 
repeated substitution to get rid of the recursive term. This process is iterative in nature and can be performed in 
one of two ways: forward substitution or backward substitution.  
 
Forward Substitution 
 
Using forward substitution, we generate the terms of the recurrence in a forward way, starting with the term(s) 
given by the base recurrence(s). In the process, we try to identify a pattern that can be expressed by a closed 
formula. 
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Example  4.1 We use forward substitution to solve the recurrence: T(1)=1; T(n)=2T(n−1)+1 for n > 1. 
 
By a process of repeated substitution we get, 
 

T(1) = 1 
T(2) = 2 T(1) + 1 = 2(1)+1= 3 
T(3) = 2 T(2) + 1 = 2(3) +1 = 7 
T(4) = 2 T(3) + 1 = 2(7) + 1 = 15 

 
We note that successive terms are simply the consecutive powers of 2 less 1. Thus, we claim that, T(n)=2n −1 for 
all n ≥ 1. This claim can be proven by induction. 
  

Base Step: T(1) = 21-1 = 1 (and it is given that T(1)=1). 
Induction Step: Assume T(k)=2k −1 is true for 1 ≤ k < n; we show that  T(n)=2n −1 as follows: 

 
T(n) =2T(n−1) + 1 = 2[2n-1−1] + 1 = 2n −1. 
 

The method of forward substitution works in limited cases because it is usually hard to recognize a pattern from 
the first few terms. 
 

Backward Substitution 
 
Using backward substitution, we generate the terms of the recurrence in a backward way, starting with the term 
given by the general recurrence. In every step, we apply the recurrence equation to a recursive term appearing in 
the RHS of the equation for T(n). Following every substitution step, we collect like terms together to help 
identify a pattern that can be expressed by a closed formula. 
 
Example  4.2 We use backward substitution to solve the recurrence: T(1)=0; T(n)=3T(n/2)+n for n > 1.  
 
We start with T(n) = 3T(n/2) + n. Next, we replace T(n/2) by 3T(n/4)+n/2 to get the following: 
 

T(n) = 3 [3T(n/4) + n/2] + n = 9T(n/4) + 3n/2 + n 
 
Next, we replace T(n/4) by 3T(n/8) + n/4   to get  
 

T(n) = 9 [3T(n/8) + n/4] + 3 n/2 + n = 27T(n/8) + 9n/4 + 3n/2 + n 
 
In general,  
 

T(n) = 3iT(n/2i) + 3i-1n/2i-1 + … + 3n/2 + n  
 
To reach T(1), we assume n=2k  and let i=k. Thus, we get  
 

T(n) = 3kT(1) + 3k-1 n/2k-1 + … + 3n/2+ n = n [(3/2)k-1 + … +  (3/2)1 + (3/2)0]  
 
Finally, we utilize the formula for a geometric progression (see Example  3.2) to get, 
 

T(n) = n [((3/2)k −1) / ((3/2) −1) ] = 2[3log n −n] = 2 [nlog 3 −n]. 



 

 

4.1.2 The Induction Method 
 
A useful technique to solve recurrences is to make a guess and then use induction to prove that the guess is 
correct. Here is an example. 
 
Example  4.3 We find a solution to the recurrence T(1) = 0; T(n) = kT(n/k)+cn. We assume that n is a power of k.   
First, let us construct a few initial values of T(n), starting from the given T(1) and successively applying the 
recurrence: 
 

T(1) = 0 
T(k) = kT(1) + ck = ck 
T(k2) = kT(k) + ck2 = 2 ck2 
T(k3) = kT(k2) + ck3 = 3 ck3 

 
This leads us to guess (claim) that the solution to the recurrence is given by T(km) = cmkm. We use induction  on 
m to prove our guess. The proof is as follows. 
 
Base Step: T(k0)=c(0)k0= 0, which is consistent with T(1)=0 (the boundary condition of the recurrence). 
 
Induction Step: We assume that the claim holds for n= km−1 (i.e., T(km-1)= c(m−1)km−1) and show that it holds for 
n= km. Then  
 

T(km) = kT(km−1) + ckm  (using the recurrence definition) 

         = k [c(m−1) km−1] + ckm   (using the induction hypothesis to substitute for T(km−1)) 

         = c(m−1+1) km = cm km  

  
Thus, we conclude that that T(n) = cn logk n. 
 
Example  4.4 Use induction to find the O-order of the recurrence T(n)=2T(n/2)+n.  
 
We guess that T(n)=O(n log n). Thus, we guess that T(n) ≤ cn log n (for some positive constant c) is a solution 
to the recurrence. For the induction step, we assume T(k) ≤ ck log k is true for k < n, and show T(n) ≤ cn log n.  
We start with the recurrence T(n)=2T(n/2)+n and then substitute for T(n/2) using the induction hypothesis to get 
the following: 
 

T(n) = 2T(n/2) + n 
       ≤ 2 [(cn/2) log n/2 ]+ n  
       = cn log n/2 + n  
       = cn log n − cn log 2 + n  
       = cn log n − cn + n  
       ≤ cn log n (when c ≥ 1) 

 
Note that we have solved the recurrence using induction without properly defining a base case. For the O-order, 
we are looking for an n0 such that the inequality is valid for all n ≥ n0. We can pick n0 ourselves.  Note that the 
base case of the recurrence (not actually given here) can be different from the base case of the induction. 
Suppose the recurrence base-case is T(1) = 1. This is at odds with our equation because T(1) ≤ c (1 log 1) = 0. 
We know that, assuming T(1)=1, T(2)=4 and T(3)=5, which do not contradict our equation, and that T(n), for n > 
3, does not depend directly on T(1), so let our bases cases be T(2) and T(3) (i.e., n0 = 2). 
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A Common Mistake 
 
We must be careful when using asymptotic notation. Here is an erroneous solution to the preceding example. 
Guess that T(n) = O(n). Thus, T(n) ≤ cn. Assuming T(k) ≤ ck is true for k < n, we show T(n) ≤ cn, as follows: 

 
T(n) = 2 T(n/2) + n 
       = 2 [cn/2] + n 
       = cn + n 
       = O(n)  ⇐  wrong! 
 

Why? Because we have not proven the exact form of the induction hypothesis (i.e., T(n) ≤ cn). The constants do 
not matter in the end, but we can not drop them (or change them) during the proof. 
 
4.1.3 The Characteristic Equation Method 
 
Certain classes of recurrence have canned formulas for their solutions. In this section, we consider two such 
classes, which occur quite frequently.  
 
Homogeneous Linear Recurrences 
 
A homogeneous linear recurrence (with constant coefficients) is of the following form: 
 

T(n) = a1T(n−1) + a2T(n−2) +… + akT(n−k),   
   
with k initial conditions (i.e., values for T(0), …, T(k−1)). 
 
The characteristic equation for this recurrence is as follows: 

xk − a1xk-1 − a2x k-2 − … − ak = 0.  
 
Case 1: Distinct Roots 
 
If r1, r2, . . . , rk are distinct roots of the characteristic equation, the recurrence has a solution of the following 
form: 
 

T(n) = c1r1
n + c2r2

n  + … + ckrk
n  

 
for some choice of constants c1, c2, …, ck. These constants can be determined from the k initial conditions. 
 
Example  4.5  Solve the recurrence T(n) = 7T(n−1) − 6T(n−2); T(0) = 2, T(1) = 7. 
 
Characteristic equation: x2 − 7x + 6 = (x−6)(x−1) = 0; the roots are r1 = 6 and  r2 = 1. 
General form of the solution: T(n) = c16n + c2(1)n = c16n + c2  
Constraints for the constants: 
 

T(0) = 2 = c1 + c2 
T(1) = 7 = 6c1 + c2 
 

Solution for the constants: c1 = 1 and c2 = 1. 
Solution for the recurrence: T(n) = 6n + 1. 



 

 

 
Case 2: Repeated Roots 
 
Each root generates one term and the solution is a linear combination (i.e., a sum) of  these terms. Whereas  
a nonrepeated root r generates the term rn, a root r with multiplicity k generates the terms (along with their 
respective constants): rn, nrn , n2rn , …, nk-1 rn. 
 
Example  4.6 Solve the recurrence T(n) = 3T(n −1) −4T(n−3); T(0) = −4, T(1) = 2, T(2) = 6. 
 
Characteristic equation: x3 −3x2 + 4 = (x+1)(x−2)2 = 0; the roots are r1 = −1 and  r2 = 2 of multiplicity =2. 
General form of the solution: T(n) = c1(−1)n + c22n + c3n2n . 
Constraints for the constants: 
 

T(0) = −4 = c1 + c2 
T(1) = 2 = −c1 + 2c2 + 2c3 
T(2) = 6 = c1 + 4c2 + 8c3 

 
Solution for the constants: c1 = −2, c2 = −2 and c3 = 2. 
Solution for the recurrence: T(n) = −2 (−1)n − 2 (2n) + 2n (2n) = −2 (−1)n + 2(n−1)2n. 
 
The next example illustrates the change of variable technique. 
 
Example  4.7 Solve the recurrence T(n) = 3T(n/2); T(1) = 1. Assume n = 2k.  
 
The recurrence can be written as T(2k) = 3T(2k-1). This is not of the form that directly fits a linear recurrence. 
However, by change of variable, we let tk = T(2k) and then the previous recurrence can be written as tk = 3tk-1. 
 
Characteristic equation:  x−3 = 0. 
General form of the solution: tk = c13k . 
Constraints for the constants: T(1) corresponds to t0; thus, t0 = 1 = c1.  
Solution for the recurrence: tk = 3k ⇒ T(n) = 3log n  = n log  3. 
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Nonhomogeneous Linear Recurrences 
 
A nonhomogeneous linear recurrence (with constant coefficients) is of the form: 
 

T(n) = a1T(n−1) + a2T(n−2) + … + akT(n−k) + F(n). 
 
There is no known general method for solving nonhomogeneous linear recurrences except in few special cases.  
We will consider the case of F(n) = p(n)Cn, where C is a constant and p(n) is a polynomial in terms of n. The 
(general) solution is a sum of the homogeneous solution Th and a particular solution Tp. This general solution is 
obtained using the following steps: 
 

1. The homogeneous solution Th  is obtained using the approach outlined previously. 
 
2. The particular solution Tp is a solution to the full recurrence that need not be consistent with the 

boundary conditions. For F(n) = (btnt + bt-1nt-1 +…+ b0)Cn, there are two cases to consider, 
depending on whether C is a root of the characteristic equation of the homogeneous  recurrence:  

 
Case 1: C is not a root:  
 
  The particular solution Tp(n) is of the form Tp(n) = (ctnt + ct-1nt-1 +…+ c0)C n. 
 
Case 2: C is a root with multiplicity of m:  
  

The particular solution Tp(n) is of the form Tp(n) = nm (ctnt + ct-1nt-1 +…+ c0)C n. 
 
In either case, we solve for the unknown constants by substituting the preceding solution-form into 
the original recurrence.  

 
3. Form the general solution, which is the sum of the homogeneous solution and the particular 

solution (i.e., T(n) = Th(n) + Tp(n)).     
 
4. Substitute the boundary conditions into the general solution and solve the resulting equations. 

 
Example  4.8 Find the general solution to the recurrence T(n) = 3T(n−1)+2n. What is the solution with T(1)=1?  
 
We need to find the homogeneous solution Th and the particular solution Tp.  For the homogeneous solution, the 
associated characteristic equation is x−3=0. Thus, Th(n)=c13n. Next, we find the particular solution. Here, the 
nonhomogeneous part F(n)=2n(1)n, where 1 is not a root of the characteristic equation. Thus, the particular 
solution is given by Tp(n)=an+b for some constants a and b, which we must determine based on the given 
recurrence. We substitute Tp(n) = an +b  in Tp(n) = 3Tp(n−1)+2n  to get  
 

an +b = 3 (a(n−1) +b) +2n. 
 
Rearranging so that the expression appears as a polynomial in terms of n with all terms appearing in one side, 

 
(−2−2a)n + (−2b+3a) =  0. 
 

From this we conclude that −2−2a=0 and −2b+3a=0. Thus, a = −1 and b = −3/2. Consequently, Tp(n) = −n−3/2. 
Finally, we obtain the general solution T(n) = Tp(n)+Tp(n) = c13n −n−3/2. 



 

 

To find the specific solution with T(1)=1, we use the general solution to get 1=T(1)= c13 −1−3/2. This gives c1= 
7/6. Consequently, T(n) = Th(n)+Tp(n) = (7/6)3n −n −3/2. 
 
Example  4.9 Find the solution to the recurrence T(n) = 2T(n−1)+ n22n  for n > 1 with T(1) = 0.   
 
For the homogeneous solution, the associated characteristic equation is x−2 = 0. Thus, Th (n) = c12n. For the 
particular solution, the nonhomogeneous part F(n)=n2(2)n. Since 2 is a root of the characteristic equation of 
multiplicity=1, the particular solution is given by Tp(n)=n(an2+bn+c)2n for some constants a, b and c, which we 
must determine based on the given recurrence. We substitute Tp(n)=n(an2+bn+c)2n in Tp(n)= 2Tp(n−1)+ n22n  to 
get the following: 
 

n(an2+bn+c)2n =2[(n−1)(a(n−1)2+b(n−1)+c) 2n-1] + n22n. 
 

We divide both sides by 2n to get  
 

n(an2+bn+c) = (n−1) (a(n−1)2+b(n−1)+c) + n2  
 
This can be rewritten as: 
 

an3+bn2+cn = a(n−1)3 +b(n−1)2 +c(n−1)+ n2 ⇒  (−3a+1) n2 + (3a− 2b) n+(b−a−c)  = 0. 
 

From this we conclude that (−3a+1)=0, (3a−2b)=0, and (b−a−c)=0. Thus, a=1/3, b=1/2, and c=1/6. 
Consequently, Tp(n) = n(an2+bn+c)2n = n((1/3)n2+(1/2)n+(1/6))2n. Thus, the general solution is given by T(n) = 
Th(n)+Tp(n) = c12n+n((1/3)n2+(1/2)n+(1/6))2n. Now we can solve for c1 using the boundary condition 
0=T(1)=c12+ (1/3+1/2+1/6)(2)=2c1+2 ⇒ c1= −1. Consequently, the solution to the original recurrence is T(n) = 
−2n+ n((1/3)n2+(1/2)n+(1/6))2n. Let us verify a few terms. By the recurrence, T(2) = 2T(1)+(22)(22) = 16 and 
T(3) = 2T(2)+(32)(23) = 104. From the claimed solution to the recurrence, T(3) = −23 + 3((1/3)32+(1/2)3+(1/6))23 
= −8 + 3(3+3/2+1/6) (8) = −8 + (72+ 36+4) = 104.  
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4.1.4 Recursion Trees and the Master Theorem 
 
The final method we examine, which is especially useful for divide-and-conquer recurrences, makes use of the 
recursion tree. We will use this method to produce a “master formula” that can be applied to many recurrences 
of the form given in the associated Master Theorem. 
 
Theorem  4.1 (Master Theorem) The solution to the recurrence T(n) = aT(n/b)+ Θ(nk); T(1)= Θ(1), where a, b,  
and k are all constants, is given by: 
 

T(n) = Θ(nk)               if a < bk 
T(n) = Θ(nk log n)      if a = bk 
T(n) = Θ(nlog

b
 a)          if a > bk 

 
Note: (Analogus results hold for the O and Ω notations). The theorem just given is a simplified version. The 
general version does not restrict the nonrecursive term to be a polynomial in terms of n. In the preceding 
recurrence, we use n/b to mean either ⌊n/b⌋ or ⌈n/b⌉; otherwise, the recurrence is not well defined if n/b is not 
an integer. Replacing each of the terms T(n/b) with either T(⌊n/b⌋) or T(⌈n/b⌉) does not affect the asymptotic 
behavior of the recurrence.  
 
The given recurrence represents the running time of an algorithm that divides the problem into a subproblems of 
size n/b each, solving each subproblem recursively. The term Θ(nk) represents the time used by the divide 
(prerecursion step) and combine (postrecursion step). A recursion tree is just a tree that represents this process, 
where each node represents the divide-and-combine work and then has one child for each recursive call. The 
leaves of the tree are the base cases of the recursion. Figure  4.1 shows such a tree (Note: Without loss of 
generality, we can assume that the nonrecursive term corresponding to Θ(nk) is given as cnk for some positive 
constant c). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  4.1 The recursion tree corresponding to a divide-and-conquer recurrence.   

 
To compute the result of the recurrence, we simply need to add up all the values in the tree. We can do this by 
adding them up level-by-level. The top level has value cnk, the next level sums to ca(n/b)k, the next level sums 
to ca2(n/b2)k, and so on. The depth of the tree (the number of levels not including the root) is logb n. Therefore, 
we get T(n) as the summation  given by Equation  4.1.  
 

T(n) = cnk [1 + a/bk + (a/bk)2 + (a/bk)3 + ... + (a/bk)log
b

 n  ]    4.1
 

cnk 

logb n    c(n/b)k c(n/b)k c(n/b)k

c(n/b2)k c(n/b2)k c(n/b2)k c(n/b2)k



 

 

To ease the manipulation of this, let us define r = a/bk. Notice that r is a constant because a, b, and k are all 
constants. Using our definition of r, the summation simplifies to the following: 
 

T(n) = cnk [1 + r + r2 + r3 + ... + r log
b

 n]                                       4.2  
 
Based on the value of r in Equation  4.2, we can consider the following three cases. 
 
Case 1: r < 1. In this case, the sum is a convergent series. Even if we imagine the series going to infinity, we 
still get that the sum 1+r+r2+ … = 1/(1−r). So, we can upper-bound formula in Equation  4.2 by cnk/(1−r), and 
lower bound it by just the first term cnk. Since r and c are constants, this solves to Θ(nk). 
 

T(n) = Θ(nk)  4.3
 
Case 2: r = 1. In this case, all terms in the summation of Equation  4.2 are equal to 1, so the result is given by  
Equation  4.4. 
 

T(n) = cnk(logb n+1) = Θ(nk log n)  4.4
 
Case 3: r > 1. In this case, the last term of the summation dominates. Thus, we get,  
 

T(n) = cnkrlog
b

 n [ (1/r)log
b

 n + … + 1/r + 1]          4.5
 
Since 1/r < 1, we can now use the same reasoning as in Case 1. The summation is at most 1/(1−1/r), which is  
a constant. Therefore, we get, 
 

T(n) = Θ(nk(a/bk) log
b

 n)   4.6
 
We simplify this formula by noticing that bk log

b
 n = nk, so we get 

 
T(n) = Θ(a log

b
 n)   4.7

 
Finally, Equation  4.8 can be gotten from Equation  4.7,  if we swap a with n — To see this, take logb of  both 
equations.  
 

T(n) = Θ(n log
b

 a)    4.8
 
The preceding three cases for the recursion tree can be likened to stacks of bricks as shown in Figure  4.2. We 
can view each node in the recursion tree as a brick of height 1 and width equal to its associated value. The value 
of the recurrence is the area of the stack. In the first case, the area is dominated by the top brick; in the second 
case, all levels provide an equal contribution, and in the last case, the area is dominated by the bottom level. 
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Figure  4.2 The three cases for the recursion tree for the recurrence given in the Master Theorem.   

 
4.1.5 Average-Case Analysis of Quicksort 
 
For the analysis of the average behavior of an algorithm, it is appropriate to assume some probability 
distribution on the input. In the case of Quicksort, we have seen that if the input is already sorted, and we always 
chose the leftmost element as the pivot then Quicksort will run in O(n2). In practice, such case rarely happens. 
On the other hand, if we assume that each of the n! permutations of the n elements (assuming the elements are 
all distinct) then this ensure that each element in the input is equally likely to be the leftmost element and thus 
chosen as the pivot (i.e., for an input A[1..n], Probability(pivot=A[i]) = 1/n). Then in such a case, formal analysis 
shows that Quicksort will run in O(n log n) on average. (Note: One way to ensure Probability(pivot=A[i]) = 1/n 
is to choose the pivot at random from the n elements; this is known as randomized Quicksort).    
   
Let C(n) denote the number of comparisons performed by the algorithm on the average on an input A[1..n].  
A Quicksort-call on n elements will call Partition, which does n−1 comparisons and then, assuming that 
Partition() returns a pivot location p (1≤ p ≤ n), we execute two Quicksort calls, on p−1 and n−p elements. 
Thus, the number of comparisons performed by Quicksort is given as,  

C(n) = n−1 + C(p−1) + C(n−p).  

From the assumption that Probability(pivot=A[i]) = 1/n, then it is equally likely that p can be any of the values 
1,2, …, n;  thus, the  expected number of comparisons is given as,  
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This type of recurrence is known as a full-history recurrence. It seems to be difficult to solve but we can utilize 
a trick that relates C(n) and C(n−1). First, multiply both sides of Equation  4.10 4.10 by n to get, 
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We can replace n by (n−1) throughout to get, 
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Subtracting Equation  4.12 from Equation  4.11, and rearranging terms yields 
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Using a new variable
1
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nCnD , we can rewrite the last recurrence as:   
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Clearly, the solution of the preceding equation is  
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We simplify the preceding expression as follows. 
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1 = Θ(n log n) (See Example  1.15), it follows that the preceding expression simplifies to: Θ(n 

log n) − Θ(n) = Θ(n log n).    
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4.2 Constructing a Tournament Schedule - revisited 
  
Let us consider once more the construction of a tournament schedule for n players. The problem is described in 
Section  3.4. This time, we use divide-and-conquer. The following solution is taken from [Aho83]. We consider 
the design of a round robin tournament schedule for n = 2k players for an integer k > 1. The divide-and-conquer 
approach constructs a schedule for one-half of the players. This schedule is designed by a recursive application 
of the algorithm by finding a schedule for one half of these players and so on. When we get down to two 
players, we have the base case and we simply pair them up. 
 
Suppose there are eight players. The schedule for players 1 through 4 fills the upper left corner (4 rows by 3 
columns) of the schedule being constructed. The lower left corner (4 rows by 3 columns) of the schedule must 
match the high numbered players (5 through 8) against one another. This sub-schedule is obtained by adding 4 
to each entry in the upper left. 
 
Now we have a partial solution to the problem. All that remains is to have lower-numbered players play high-
numbered players; or equivalently, fill the top-right and bottom-right sections of the schedule. For the top-right 
section, this is easily accomplished by having players 1 through 4 play 5 through 8, respectively, on day 4 and 
cyclically permuting 5 through 8 on subsequent days. Similarly, for the bottom-right section, we have players 5 
through 8 play 1 through 4, respectively, on day 4 and cyclically permuting 1 through 4 on subsequent days. The 
process is illustrated in Figure  4.3. This process can be generalized to construct a schedule for 2k players for any 
k. 
 

 
 
 

 

 

 

 

 

 

 

 

 
 

Figure  4.3 Using divide-and-conquer to construct a tournament schedule for 8 players.  

 
 
Exercise  4.1 Write, with proper explanation, recurrence equations for the running time T(n) of the preceding 
algorithm.  
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4.3 The MinMax Problem 
 
We consider a simple problem that, nonetheless, illustrates the utility of divide-and-conquer in algorithm design. 

The MinMax Problem. Given a sequence of integers, find the minimum and the maximum values.  
 
The straightforward solution to this problem is to scan the elements searching for the minimum, which would 
require n−1 comparisons, then scan the elements one more time to search for the maximum. Thus in total, there 
will be 2n−2 comparisons. Can we do better? Yes, divide-and-conquer does it using (3n/2)−2 comparisons (i.e., 
a savings by n/2 comparisons). How? Answer: read on. 
 
 

 
integer-pair MinMax(int [] A, int lo, int hi) 
{  if (lo==hi) return (A(lo],A[lo])  // one-element case 
   else if (lo = hi-1)  // two-element case 
   {  if A[lo] <= A[hi) return (A[lo],A[hi]); 
      else return (A[hi],A[lo]); 
   } 
   else // general case 
   {  mid = (lo+hi)/2; 
     (x1,y1) = MinMax(A,lo,mid); 
     (x2,y2) = MinMax(A, mid+1,hi); 
     // set x1 as the smaller of x1 and x2 
     if (x2 < x1) x1 = x2; 
     // set y1 as the larger of y1 and y2 
     if (y2 > y1) y1 = y2; 
     return (x1,y1); 
   } 
} 

 
Listing  4.2 A divide-and-conquer algorithm for the MinMax problem. 

 

Listing  4.2 gives a divide-and-conquer algorithm for this problem. For a sequence of one element (i.e., lo=hi), 
the element itself is both the minimum and the maximum. For a sequence of two elements (i.e., lo=hi−1), one 
comparison suffices to know the minimum and the maximum. For a sequence having more than two elements 
we divide the sequence into two equal (or nearly equal) parts, find the minimum and the maximum for each part  
and use these to compute the overall minimum and maximum. 

Let C(n) denote the count of comparisons performed by the algorithm on n elements. Based on the algorithm, 
we can write the following recurrence equations for C(n).      

Base cases:    C(1) = 0;  C(2) = 1. 
General case:  C(n) = C(n/2) + C(n− n/2) + 2. 

 
Let us solve this recurrence assuming n=2k for some nonnegative integer k. First, note that the general-case 
recurrence can be rewritten as C(n)=2C(n/2)+2. Thus, using backward substitution, we get the following: 

 
C(n) = 2C(n/2) + 2 
 = 2 [2C(n/4)] + 2] + 2 = 4 C(n/4) + 4 + 2 
 = 4 [2C(n/8) +2] + 4 + 2 = 8 C(n/8) + 8 + 4 + 2, 
 

and in general,  
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C(n) = 2i C(n/2i ) + 2i + … + 4 + 2  4.15
 
To reach C(2), we let  i = k−1. Thus, 
 

C(n) = 2k-1 C(2) + 2k-1 + … + 4 + 2 = 2k-1 C(2) + [2k −2] = 2k-1 + 2k −2 = 3n/2 −2    4.16
 
Thus, we conclude that the divide-and-conquer algorithm does 3n/2−2 comparisons. This is a significant 
reduction by n/2 comparisons over the straightforward algorithm. Let us investigate the reason behind this 
reduction.  It turns out that the reduction in the number of comparisons is due to two facts (note that (a) and (b) 
⇒ a reduction of n/2 comparisons): 
 

(a) Explicit handling of a two-element case using one comparison. Observe that two comparisons are used if  
a two-element case is handled as a general case. 

AND  
 (b)  The two-element case occurs n/2 times.  
 

In other words, there will not be any reduction in the number of comparisons if (a) is not satisfied. To see this, 
note that if the algorithm does not handle a two-element case explicitly as a base case, then Equation  4.16 
becomes,   
 

C(n) = 2k C(1) + 2k + … + 4 + 2 = 2k C(1) + [2k+1 −2]  = 2k+1− 2 = 2n −2      4.17
 
The justification for (b) becomes apparent when we consider the tree of recursive calls — See Figure  4.4 for 
n=16. In general (even if n is not a power of 2), we can see that the leaves of the recursive tree correspond to the 
partitioning of the n elements into 2-element (disjoint) sets.  Thus, there will be n/2 such cases.  
 
 
 
 
 
 

 

 

 

 

  

 
Figure  4.4 The tree of recursive calls for computing MinMax(A,1,16). 

 
 
Exercise  4.2 Another algorithm that satisfies the conditions (a) and (b) stated previously is obtained using 
induction by handling the n elements as a two-element case (using three comparisons) and n−2 elements. 
Express this algorithm in pseudocode.   

MinMax(1,2) 

MinMax(1,16)

MinMax(1,8) 

MinMax(1,4) MinMax(5,8) 

MinMax(7,8)MinMax(3,4) 

MinMax(9,16)

MinMax(9,12) MinMax(13,16) 

MinMax(5,6) MinMax(11,12) MinMax(9,10) MinMax(15,16) MinMax(13,14) 



 

 

4.4 Finding the Majority Element 
 
In an election involving n voters and k candidates, each voter casts his vote to one of the k candidates. Thus, the 
outcome from voting can be represented as an n-element sequence where an element is an integer in [1,k]. There 
are then various criteria to determine the winner. One criterion could be to declare the candidate who scores 
more than 50% of the votes as the winner. 
 
Such element is known as the majority element. Since the majority element is not always assured, an alternative 
criterion is that the winner be the candidate that scores most votes. Such element is known as the mode element. 
Still another possibility is to have a rerun election limited to the candidates who score above certain threshold. 
 
Next, we discuss algorithms for finding the majority element. Note that the majoriy, if it exists, is unique. This is 
because we cannot have two distinct elements each of which appears more than 50%. 
 
The Majority-Element Problem. Given a sequence of n elements where each element is an integer in [1,k], return 
the majority element (an element that appears more than n/2 times) or zero if no majority element is found.  
 
A sequence of size 2 has a majority only if both elements are equal. For an input of size n=8 (and n=9), the 
majority element must appear at least 5 times. For example, for the sequence 1,2,1,3,1,1,4,1 the majority 
element is 1.  
 
Next, we consider several algorithms for finding the majority element. 
 
A Distribution-Based Algorithm 
 
There is a simple and fast algorithm for determining the majority if k is small. Simply, use an array Count[1..k]   
where Count[i] is the number of occurrences of element i. This array can be computed by scanning the input 
sequence once. Then the Count array is scanned to determine whether there is any entry having a value > n/2. 
Such algorithm has O(n+k) (i.e., O(n) since k is much smaller than n) running time and O(k) space. 
 
 
Exercise  4.3  Give program code for the preceding algorithm. 
 
Exercise  4.4 The preceding algorithm is very inefficient if k is very large in comparison with n. Explain how 
hashing might be useful to efficiently implement the algorithm in this case. Give program code for the modified 
algorithm and state its running time and space complexity. Note: If k is much larger than n, many of the values 
in [1,k] do not appear as elements. 
 
A Comparison-Based Algorithm 
 
A simple comparison-based algorithm for finding the majority is as follows: Count the occurrences of the 
elements, one at a time, return when finding an element whose count is more than n/2. The algorithm is shown 
in Listing  4.3. 
 
Note that, as an optimization measure, there is no point of searching for the i-th element among the elements 
that appear in positions < i. Can you see why? Another optimization measure that can be incorporated is to end 
the current iteration of the outer loop if (count + count of remaining elements to be checked) is ≤ n/2. 
 
The dominant operation in this algorithm is the comparison “(A[j] == item)”. In the worst case (i.e., when 
there is no majority), it is executed (n−1)+(n−2)+…+1 = n(n−1)/2 = O(n2). Thus, this algorithm has O(n2) 
running time in the worst case. The algorithm uses O(1) space. 
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Input: A positive integer array A[1..n]  
Output: Return the majority element or zero if no majority is found  
 
int  Majority(int[] A, int  n) 
{ for(int i=1; i<= n; i++)   
  { int count = 1; 
    int item = A[i]; 
    for(int j=i+1; j <= n; j++)    
    { if (A[j] == item) count++; } 
 
    if (count > n/2) return item;   
  } 
  return 0; 
} 

 
Listing  4.3 An O(n2)-algorithm for finding the majority element. 

 

A Divide-and-Conquer Algorithm 
 
Let us use divide-and-conquer approach to develop an algorithm for the majority problem. First, we note the 
following fact. If the n elements are divided into equal (or nearly equal) halves then the majority among the n 
elements must be a majority in the first half or a majority in the second half. This claim can be proven using  
a proof by contradiction, as follows.  
 
If n elements are divided into two halves, then these will be of sizes n/2 and n−n/2. Suppose the majority 
element x (which, by definition, appears more than n/2 times in the original sequence) is neither a majority in 
the first half, nor a majority in the second half.  This implies that x appears ≤ (n/2)/2 in the first half and ≤ 
(n−n/2)/2 in the second half. This implies that the total count of occurrences of x in the original sequence is ≤ 
(n/2)/2 + (n−n/2)/2 ≤ n/2, but then x cannot be a majority (i.e., we have reached a contradiction).   
 
Note that the preceding claim is a one-way implication. In other words, it is possible to have a majority in one of 
the halves yet that element is not the overall majority. For example, given the two halves: 1,1,1,2 and 3,4, 5,6; 
we see that, while 1 is a majority in the first half, the two halves put together have no majority.  This means that 
the majority element in one of the halves is a candidate majority for the whole sequence (Note: It is possible to 
have two candidates). Thus, it suffices to check the count of occurrences in the whole sequence for at most two 
candidates. The algorithm is given in Listing  4.4. 

 



 

 

 
Input: A positive integer array A[lo..hi] 
Output: Return the majority element or zero if no majority is found 
 
int  Majority(int[] A, int  lo, int hi) 
{  if (lo > hi) return 0; // empty sequence case 
   else if (lo == hi) return A[lo]; // one-element sequence case   
   else // general case 
   {  int mid = (lo+hi)/2; // integer division 
      int x = Majority(A,lo,mid); 
      int y = Majority(A,mid+1,hi); 
      if (x==y) return x; // x and y are both zero or both majority  
      if (x > 0) // x is a majority in 1st half 
         if ( Count(A,lo, hi,x) > (hi-lo+1)/2 ) return x;  
      if (y > 0) // y is a majority in 2nd half 
         if ( Count(A,lo, hi,y) > (hi-lo+1)/2 ) return y;  
      return 0; 
   }   
} 

 
Listing  4.4 A divide-and-conquer algorithm for finding the majority element. 

 
To analyze the preceding algorithm, let us write recurrence equations for C(n), the (worst case) number of  
element comparisons executed by the algorithm. To simplify things, we will only count comparisons executed 
by the Count() method. Through inspection, we deduce the following equations:  
 

C(n) = C(n/2) + C(n−n/2) + 2n 
C(0) = C(1) =  0    

 
If we are merely interested in determining the order of running time (instead of the exact number of element 
comparisons), we can approximate the general recurrence as C(n)=2C(n/2)+2n. This can be solved using 
backward substitution as follows: 
 

C(n) = 2C(n/2) + 2n 
 = 2 [2C(n/4)] + 2(n/2)] + 2n = 4C(n/4) + 2n + 2n   
 = 4 [2C(n/8) +2(n/4)] + 2n + 2n = 8C(n/8) + 2n + 2n + 2n, 

 
and, in general, C(n) = 2iC(n/2i)+i(2n). Assuming n=2k, we get C(n)= 2i C(n/2i)+i(2n). To reach C(1), we let i=k, 
Thus, C(n)= 2k C(n/2k)+k(2n) = k(2n) = 2n log n = Θ(n log n). 
 
Note: The recurrence C(n)=2C(n/2)+O(n) is a familiar recurrence for many divide-and-conquer algorithms 
where the time for divide-and-combine is linear in the input size (Mergesort is one such example).  The solution 
to such recurrence is C(n) = O(n log n). 
 
There is a rather interesting and very efficient (i.e., O(n)) algorithm for finding the majority element. It is based 
on induction (i.e., problem size reduction) by elimination of noncandidate. The algorithm is discussed in the 
solution for Problem 5 (See end-of-chapter solved exercises). 
 
 
Exercise  4.5 The preceding divide-and-conquer majority algorithm can be made more efficient by having it 
memorize and return, in addition to the majority element, the count of occurrences. Rewrite the algorithm to 
take this into account. Next, write the recurrence equation for C(n) (as defined above) for the modified 
algorithm and indicate the worst-case order of running time in this case. 
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Exercise  4.6 Convert the preceding divide-and-conquer majority algorithm into an iterative algorithm. Hint: Use 
recursion unfolding but do it level-by-level based on the tree of recursive calls. 
 
Exercise  4.7 Assuming that the input sequence contains a majority element, carry out best-case analysis on 
element comparisons for the divide-and-conquer majority algorithm given previously. How many times does the 
Count() method get executed in the best case?  
 



 

 

4.5 The Skyline Problem  
 
We consider a problem related to the drawing of geometric figures. The problem is concerned with the removal 
of hidden lines — lines obscured by other parts of a drawing.  

The Skyline Problem.  Given the exact locations and shapes of n rectangular buildings in a 2-dimensional city, 
give an algorithm that computes the skyline (in 2 dimensions) of these buildings, eliminating hidden lines. 
 
As an example of an input is given in Figure  4.5(a); the corresponding output is given in Figure  4.5(b). 
 
We assume that the bottom of all buildings lie on a fixed horizontal line. A building Bi is represented by the 
triple (Li, Hi, Ri) where Li and Ri denote the left and right x-coordinates of the building respectively, and Hi   
denotes the building’s height. The input is a list of triples; one per building. The output is the skyline specified 
as a list of x-coordinates and heights connecting them arranged in order by x-coordinates. For the example 
shown in Figure  4.5, the input and output are:  
  

Input: (1, 11, 5), (2, 6, 7), (3, 13, 9), (12, 7, 16) , (14, 3, 25), (19,18,22)   
Output: (1,11,3,13,9,0,12,7,16,3,19,18,22,3,25,0) 

 
 

 

 

 

 

 

 

 
 

(a)                                 (b) 
 

Figure  4.5 The skyline problem (a) input (b) output (the skyline). 

 

 

 

 

 

 

 

 
 

Figure  4.6 Addition of a building Bn (dashed line) to the skyline of Figure  4.5(b).  
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The straightforward algorithm for this problem uses induction on n (number of buildings). The base step is for 
n=1 and the skyline can be obtained directly from B1. As an induction step, we assume that we know Sn-1  (the 
skyline for n−1 buildings), and then must show how to add the n-th building Bn to the skyline. The process of 
adding a building to the skyline can be examined by looking at Figure  4.6, where we add the building Bn =(Ln, 
Hn, Rn)=(6,7,24) to the skyline (1,11,3,13,9,0,12,7,16,3,19,18,22,3,25,0). 
 
We scan the skyline from left to right stopping at the first x-coordinate x1 that immediately precedes Ln (in this 
case x1= 3) and then we extract the part of the skyline overlapping with Bn as a set of strips (x1,h1), (x2,h2), …, 
(xm,hm) such that xm < Rn  and xm+1 ≥ Rn (or xm is last).  In this set of strips, a strip will have its hi replaced by Hn  
if Hn > hi (because the strip is now covered by Bn). If there is no xm+1  then we add an extra strip (replacing the 
last 0 in the old skyline) (xm, Hn, Rn, 0). Also, we check whether two adjacent strips have the same height; if so, 
they are merged together into one strip. This process can be viewed as a merging of Bn and Sn-1 . 

In the worst case, this algorithm would need to examine all the n−1 triples when adding Bn (this is certainly the 
case if Bn is so wide that it encompasses all other triples). Likewise, adding Bn-1 would need to examine n−2 
triples, and so on. This implies that the algorithm is O(n)+O(n−1)+ …+O(1) = O(n2).   

 
A Divide-and-Conquer Algorithm 
 
Is merging two skylines substantially different from merging a building with a skyline? The answer is, of 
course, No. This suggests that we use divide-and-conquer. Divide the input of n buildings into two equal (or 
nearly equal) sets. Compute (recursively) the skyline for each set then merge the two skylines.  
 
The algorithm corresponds to the FindSkyLine() method given in Listing  4.5. This has a structure similar to 
Mergesort. Unlike Mergesort, the input and output for FindSkyLine are of different data-types. In Mergesort, the 
input and output are arrays of some base type. However, that does not matter much. We simply need to merge 
two skylines (and not two sets of buildings). For instance, given two skylines A=(a1, ha1, a2, ha2, …, an, 0)  and  
B=(b1, hb1, b2, hb2, …, bm, 0),  we merge these lists as the new list:  (c1, hc1, c2, hc2, …,  cn+m, 0). Clearly, we 
merge the list of as and bs just like in the standard Merge algorithm. But, in addition to that, we have to decide 
on the correct height in between these boundary values. We use two variables CurH1 and CurH2 (note that 
these are the heights prior to encountering the heads of the lists) to store the current height of the first and the 
second skyline, respectively. When comparing the head entries (CurH1, CurH2) of the two skylines, we 
introduce a new strip (and append to the output skyline) whose x-coordinate is the minimum of the entries’ x-
coordinates and whose height is the maximum of CurH1 and CurH2. 
 
For our purpose — see Listing  4.6 — a skyline is a list of integer pairs. For legibility, we define a strip structure 
to represent a pair (an x-coordinate component lx and a height component h). We define a Skyline class that 
maintains a list of strips. For simplicity, the list is built using a statically allocated array.  The following is a 
typical code to prepare the proper input and then invoke FindSkyline(). 
 

int n = 6; 
Bldg[] B = new Bldg[n]; 
B[0] = new Bldg(1,11,5); B[1] = new Bldg(2,6,7); B[2] = new Bldg(3,13,9); 
B[3] = new Bldg(12,7,16); B[4] = new Bldg(14,3,25); B[5] = new Bldg(19,18,22); 
 
Skyline sk = Skyline.FindSkyline(B,0,n-1); 
Console.WriteLine("The skyline: " + sk.ToString()); 

 
The algorithm given in Listing  4.5 produces “noncompact” output.  For example, for the preceding input, we get 
the following output: (1,11,2,11,3,13,5,13,7,13,9,0,12,7,14,7,16,3,19,18,22,3,25,0). While merging two skylines 
or after we are done (say, within ToString() method of the Skyline class), we can massage the skyline to 



 

 

eliminate redundant strips, such as 1, 11, 2, 11, whenever we see two adjacent strips having the same height. 
Similarly, we eliminate strips that happen to have the same x-coordinate. 
 
Let T(n) denote  the running time of this algorithm for n buildings. Since merging two skylines of size n/2 takes 
O(n), we find that T(n) satisfies the recurrence T(n)=2T(n/2)+O(n). This is just like Mergesort. Thus, we 
conclude that the divide-and-conquer algorithm for the skyline problem is O(n log n).  
 
 

 

static Skyline FindSkyline(Bldg[] B, int lo, int hi) 
{ if (lo == hi) 
  { Skyline sk = new Skyline(2); 
    sk.Append(new strip(B[lo].lx, B[lo].h) );  
    sk.Append(new strip(B[lo].rx, 0)); 
    return sk; 
  } 
  int mid = (lo+hi)/2; 
  Skyline sk1 = FindSkyline(B, lo, mid);  
  Skyline sk2 = FindSkyline(B, mid+1, hi); 
  return MergeSkyline(sk1, sk2); 

} 

static Skyline MergeSkyline(Skyline SK1, Skyline SK2) 
{  Skyline SK = new Skyline(SK1.Count + SK2.Count); // Allocate array space 
   int CurH1 = 0; int CurH2 = 0; 
   while ((SK1.Count > 0) && (SK2.Count > 0)) 
   if (SK1.Head().lx < SK2.Head().lx) 
   { int CurX = SK1.Head().lx; 
     CurH1 = SK1.Head().h; 
     int MaxH = CurH1; 
     if (CurH2 > MaxH) MaxH = CurH2; 
     SK.Append(new strip(CurX, MaxH)); 
     SK1.RemoveHead(); 
   } 
   else 
   { int CurX = SK2.Head().lx; 
     CurH2 = SK2.Head().h; 
     int MaxH = CurH1; 
     if (CurH2 > MaxH) MaxH = CurH2; 
     SK.Append(new strip(CurX, MaxH)); 
     SK2.RemoveHead(); 
   } 
                  
   while (SK1.Count > 0) // Append  SK1 to Skyline 
   { strip str = SK1.RemoveHead(); SK.Append(str); } 
   while (SK2.Count > 0) // Append SK2  to Skyline 
   { strip str = SK2.RemoveHead(); SK.Append(str); } 
 
   return SK;  
} 

 
Listing  4.5 A divide-and-conquer algorithm for the skyline problem. 
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struct Bldg  
{ internal int lx, rx, h; 
  public Bldg(int x1, int h1, int x2) { lx = x1; h = h1; rx = x2; } 
} 
 
class Skyline 
{  struct strip 
   { internal int lx, h;  
     internal strip(int x1, int h1) { lx = x1;  h = h1; } 
   }  
 
  strip[] strips; 
  public int Count; 
  int StartLoc; 
           
  public Skyline(int n) 
  { Count = 0; StartLoc = 0; strips = new strip[n]; } 
 
  public void Append(strip str) 
  { strips[StartLoc+Count] = str; Count++; } 
           
  public strip Head() { return strips[StartLoc]; } 
 
  public strip RemoveHead()  
  {  strip str = strips[StartLoc]; 
     Count--;  StartLoc++; 
     return str; 
  } 
 
  public override string  ToString() 
  { string str = ""; 
    for(int i = StartLoc; i < StartLoc+Count; i++) 
    { if (i > StartLoc) str = str + ","; 
      str = str + strips[i].lx + "," + strips[i].h;  
    } 
    return "(" + str + ")"; 
  } 
} 

 
Listing  4.6 A Skyline class used by the skyline algorithm of  Listing  4.5 . 



 

 

4.6 Polynomial Multiplication 
 
We consider the problem of multiplying polynomials. 
 
The Polynomial-Multiplication Problem. Given two polynomials of degree n, A(x)=a0+a1x+…+anxn and 
B(x)=b0+b1x+ … +bnxn; compute the product A(x)B(x). 
 
Assume that the coefficients ais and bis are stored in arrays A[0..n] and B[0..n]. The cost of a matrix-
multiplication algorithm is the number of scalar multiplications and additions performed. 
 
Convolutions 
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for 0 ≤ k ≤ n+m. 

 
The vector (c0,c1, …, cn+m) is known as the convolution of the vectors (a0,a1, …, an) and (b0,b1, …, bm). 
Calculating convolutions (and, thus, polynomial multiplication) is a major problem in digital signal processing. 
Convolutions appear in some unexpected places. For example, every row in Pascal’s triangle (in this triangle, 

the n-th row consists of the binomial coefficients ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
i
n for i= 0 to n) can be obtained from the previous row by 

convolution with the vector [1, 1]; equivalently, if the polynomial p(x) represents a row, the next row is given by  
(1+x)* p(x). 
 
Example  4.10 Given, A(x) = 1 + 2x + 3x2  and B(x) = 4 + 5x + 6x2, then  
        A(x)B(x) = (1×4) + (1×5 + 2×4) x + (1×6 + 2×5 + 3×4) x2 + (2×6 + 3×5) x3 + (3×6) x4. 
 
For the polynomial-multiplication problem, it is generally assumed that the two input polynomials are of the 
same degree n. If the input polynomials are of different degrees, then we simply view the smaller-degree 
polynomial as having zero coefficients for its high-order terms. 
 
A Direct (Brute-Force) Approach 
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0
 for 0 ≤ k ≤ 2n. 

The direct approach is to compute all ck using the preceding formula. The total number of scalar multiplications 
and additions needed are Θ(n2) and Θ(n2), respectively. Hence, the complexity is Θ(n2).  
 
Can we do better? Let us try a divide-and-conquer approach. 
 
A Divide-and-Conquer Approach 
 
Let m =⎣n/2⎦ and define A0(x) and A1(x) as follows: 
  

A0(x) = a0 + a1x + … + am-1xm-1 
A1(x) = am + am+1x + … + anxn-m  
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Clearly,  A(x) = A0(x)+ xmA1(x). Similarly, we define B0(x) and B1(x) such that B(x) = B0(x)+xmB1(x).  
 
Now, A(x)B(x) = A0(x)B0(x) + xm [A0(x)B1(x)+A1(x)B0(x)] + x2m A1(x)B1(x). This latter expression requires four 
polynomial-multiplication operations where the operands involved are polynomials of degree n/2. In other 
words, the original problem of size n is now divided into 4 subproblems of size n/2. 
  
Example  4.11 Given A(x) = 2 + 5x + 3x2 + x3 − x4 and  B(x) = 1 + 2x + 2x2 + 3x3 + 6x4, we get the following:  
 

A0(x) = 2 + 5x;  A1(x) = 3 + x – x2 
B0(x) = 1 + 2x;  B1(x) = 2 + 3x + 6x2 
 
A0(x)B0(x) = 2 + 9x + 10x2 
A0(x)B1(x) = 4 + 16x + 27x2 + 30x3   
A1(x)B0(x) = 3 + 7x + x2 – 2x3   
A1(x)B1(x) = 6 + 11x + 19x2 + 3x3 − 6x4 

 
Thus, A(x)B(x) = (2+9x+10x2) + x2 [(4+16x+27x2 + 30x3) + (3+7x+x2 −2x3)] + x4 (6+11x+19x2+3x3 −6x4) 
= 2 + 9x +17x2 + 23x3 + 34x4 + 39x5 + 19x6 + 3x7 – 6 x8.  
  
The conquer step solves four subproblems of size n/2 each. The combine step adds four polynomials of degree 
n/2 each. This is Θ(n). Thus, T(n)=4T(n/2)+Θ(n). The solution for this recurrence (i.e., using the master 
theorem) is T(n) = Θ(n2). This is no better than the direct approach. 
 
Question: Given four numbers A0, A1, B0, B1, how many multiplications are needed to compute the three values  
A0B0, A0B1+A1B0, and A1B1? 
 
Obviously, this can be done using four multiplications, but there is a way of doing it using only three 
multiplications. Define Y, U and Z as follows: 
  

Y = (A0 + A1) (B0 + B1)  
U = A0 B0     
Z= A1 B1    

 
U and Z are what we originally wanted and A0 B1+A1 B0   = Y−U−Z. 
  
Improving the Divide-and-Conquer Algorithm 
 
Define Y(x), U(x) and Z(x) such that: 
 

Y(x) = (A0(x) + A1(x)) × (B0(x) + B1(x))  
U(x) = A0(x)B0(x) 
Z(x) = A1(x)B1(x) 
  

Then, Y(x)−U(x)−Z(x) gives A0(x)B1(x) + A1(x)B0(x).  

Hence, A(x)B(x) is given by U(x) + xm [Y(x)−U(x)−Z(x)] + x2mZ(x). This way, we need to call the multiply 
procedure three times: first to compute Y, second to compute U, and a third time to compute Z. 



 

 

Running-Time Analysis of the Modified Algorithm 
 
The conquer step solves three subproblems of size n/2 each. The combine step adds six polynomials of degree 
n/2 each. This is Θ(n). Thus, T(n)=3T(n/2)+Θ(n). The solution to this recurrence (i.e., using the Master 
Theorem) is T(n)=Θ(nlog

2
 3) =Θ(n1.58). 

 
The previous discussion shows that a straight-forward divide-and-conquer approach may not give the best 
solution. Our original divide-and-conquer algorithm was just as bad as brute force. However,  through clever 
rearrangement of terms, we were able to get an efficient algorithm. This same algorithm can be adapted for 
multiplying two large integers; we simply think of the digits of an integer as the coefficients of a polynomial. 
For example, the decimal number 456 = 4*102 + 5*10 + 6 can be thought as corresponding to the polynomial 
p(x) = 4x2 + 5x + 6. 
 
Cooley [Coo65] devised an O(n log n)-algorithm for multiplying two polynomials of degree n. Cooley’s 
algorithm relies on using the fast Fourier transform (FFT) . In this case, a polynomial is represented by its 
values at specially chosen points, and the polynomial-multiplication problem is reduced into an FFT problem. 
The FFT algorithm itself is a divide-and-conquer algorithm and is considered one of the most important 
discoveries in the filed of algorithms in recent decades. 
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4.7 Matrix Multiplication 
 
Matrix multiplication is an important problem in linear algebra; it is used for solving linear systems and matrix 
inversion. It is also needed for computing transitive closure. Matrix multiplication arises in computer graphics 
applications, such as coordinate transformations via scaling, rotation, and translation.   
    
The Matrix Multiplication Problem. Given two matrices A of size m×n and B of size n×r, the product matrix 
C=A×B is defined such that ∑ =

=
n
k

jkBkiAjiC
1

],[*],[],[  for 1≤ i ≤ m and 1≤ j ≤ r.  

 
This definition leads to the following standard algorithm. 
 

// Compute C = A×B, where A is m×n matrix, B is n×r matrix, C is m×r matrix 
for i=1 to m  
  for j = 1 to r 
  {  C[i,j] = 0; 
     for k = 1 to n 
        C[i,j] = C[i,j] + A[i,k]*B[k,j]; 
  } 

  

Complexity of the Standard Algorithm 
 
The standard algorithm computes a total of mr entries for the C matrix where the computation of each entry uses 
Θ(n) scalar additions and Θ(n) scalar multiplications. Thus, the algorithm runs in Θ(mnr) time. For an input 
consisting of n×n square matrices, the algorithm does n3 multiplications and n2(n−1) additions. Hence, the 
complexity of the algorithm is Θ(n3).  
 
Strassen’s algorithm and Winograd’s algorithm are two matrix multiplication algorithms that are asymptotically 
faster than the standard algorithm. These are based on clever divide-and-conquer recurrences. However, they are 
difficult to program and require very large matrices to beat the standard algorithm. In particular, some empirical 
results show that Strassen’s algorithm is unlikely to beat the standard algorithm for n ≤ 100. 
 
4.7.1 Strassen’s Matrix Multiplication 
 
Strassen’s algorithm is a divide-and-conquer algorithm. For clarity, we will assume that the input matrices are 
both n×n and that n is a power of 2. If n is not a power of 2, matrices can be padded with rows and columns of 
zeros. We decompose each matrix in four n/2×n/2 submatrices: 
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Strassen’s algorithm computes seven new matrices, M1 through M7. 

M1 = (A00 + A11) * (B00 + B11) 
M2 = (A10 + A11) * B00    
M3 = A00 * (B01 – B11)  
M4 = A11 * (B10 – B00) 
M5 = (A00 + A01) * B11 
M6 = (A10 – A00) * (B00 + B01) 
M7 = (A01 – A11) * (B10 + B11) 

 



 

 

Then the C matrix is given by: 
 

C00 = M1 + M4 – M5 + M7  
C01 = M3 + M5  
C10 = M2 + M4  
C11 = M1 + M3 – M2 + M6 

 
It is not difficult to verify that the submatrices of C are calculated correctly if we use Strassen’s formulas. For 
example, C00 is A00*B00+A01*B10 is equal to M1+M4–M5+M7. Note that the expressions for the matrices M1 
through M7 involve matrix multiplication, which is computed (recursively) using Strassen’s algorithm. These 
matrices are computed directly as addition and multiplication of numbers only if they are of size 1×1. 
  
Complexity Analysis of Strassen’s Algorithm 
 
Let M(n) denote the number of multiplications made by Strassen’s algorithm for multiplying two n×n matrices 
(where n is a power of 2), then M(n) is given by the following recurrence:  
 

M(n) = 7M(n/2)  for n > 1,  M(1) = 1. 
  
Since the savings in the number of multiplications is achieved at the expense of making extra additions, let us 
consider the number of additions A(n) made by Strassen’s  algorithm  for multiplying two n×n matrices, which 
is given by the recurrence:  
 

A(n) = 7A(n/2) + 18(n/2)2  for n > 1,  A(1) = 0. 
 
For the solution’s order, we can use the Master Theorem where we find that both M(n) and A(n) are O(nlog

2
7).  

Thus, the complexity of Strassen’s algorithm is O(nlog
2

7) = O(n2.81). 
 
Note that for multiplying two n×n matrices where n=2, Strassen’s algorithm does 7 multiplications and 18 
additions whereas the standard algorithm does 8 multiplications and 4 additions. This means that when using 
Strassen’s algorithm, we have traded 1 multiplication for 14 additions, which does not appear to be any savings.  
However, in the long run (i.e., for n > 100), the saving in multiplications will outnumber the count of extra 
additions. To avoid the cost of the extra additions that would undo any savings in multiplications, a proper 
implementation of Strassen’s algorithm should call the standard algorithm whenever n falls below a certain 
threshold (for example, n < 80). 
 

4.7.2 Winograd’s Matrix Multiplication 
 
It is obvious that an element in the product (output) matrix is the dot product of a row and a column from the 
input matrices. Winograd observed that the dot product can be factored in a way that allows us to preprocess 
some of the work. For example, consider the dot product of the vectors V=(v1, v2, v3, v4)  and W=(w1, w2, w3, w4). 
It is given by the following: 
 

V•W = v1w1 + v2w2 + v3w3+ v4w4 
 
It is also given by the following: 
  

V•W = (v1+w2)(v2+w1)+(v3+w4)(v4+w3) −v1v2 −v3v4 −w1w2−w3w4. 
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At first look, it appears that the second equation does more work than the first,  but what might not be obvious is 
the fact that the second equation allows us to preprocess some of the work  because the last few terms involve 
either V alone or W alone.   
  
Let A be an m×n matrix and B be an n×r matrix.  Let C=A×B.  Then, assuming n is even, to calculate C, first the 
rows of A and columns of B are processed as follows: 
 

Rowi  = ai1*ai2 + ai3*ai4 + ai5*ai6 + … + ai,n-1*ai,n 
Coli   = b1i*b2i + b3i*b4i + b5i*b6i + … + bn-1,i*bn,i 
 

Then, the C matrix is obtained as follows: 
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Based on the preceding formulation, we can express Winograd's algorithm by the program code given in Listing 
 4.7. 

Analysis of Winograd’s Algorithm 
 
Table  4.1 gives the count of scalar additions and multiplication executed by Winograd’s algorithm, assuming n 
(the shared dimension for the input matrices) is even. Table  4.2 contrasts these numbers, for n being a power of 
2, with the standard algorithm and Strassen’s algorithm.  
 

 

 

 

 

 

 

 

 

 

 Additions Multiplications 

Preprocessing of A m(n/2−1) m(n/2) 

Preprocessing of B r(n/2−1) r(n/2) 

Compute entries of C mr(n+n/2+1) mr(n/2) 

Total [m(n−2) + r(n−2) + nr(3n+2)]/2 (mnr + mn+nr)/2 
 
Table  4.1 The counts of additions and multiplications for Winograd’s algorithm for even n (shared dimension). 



 

 

 
Input: A is m×n matrix and B is n×r matrix 
Output: The matrix C = A×B; C is m×r 
 
void MatrixMultiply(int[,] A, int[,] B, ref int[,] C)   
{ C = new int[m+1,r+1]; 
  nby2 = n/2; 
  // Compute row factors  
  for i = 1 to m  // i ranges over 1st dimension of A 
  {  row[i] = 0; 
     for j = 1 to nby2 
        row[i] = row[i]+ A[i,2*j-1]*A[i,2*j]; 
  } 
 
  // Compute column factors  
  for i = 1 to r   // i ranges over 2nd dimension of B 
  { col[i] = 0; 
    for j = 1 to nby2 
       col[i] = col[i]+ B[2*j-1,i]*B[2*j,i]; 
  } 
 
  // Compute matrix C 
  for i = 1 to m    
     for j = 1 to r    
     { C[i,j] = -row[i]-col[j]; 
       for k = 1 to nby2 
          C[i,j] = C[i,j] + (A[i,2*k-1]+B[2*k,j])*(A[i,2*k]+B[2*k-1,j]); 
     } 
 
  // Add terms for odd dimension 
  if (2*nby2 != n) 
    for i = 1 to m    
       for j = 1 to r    
          for k = 1 to nby2 
             C[i,j] = C[i,j] + A[i,n]*B[n,j]; 
} 

 
Listing  4.7 Winograd’s matrix multiplication algorithm. 
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Concluding Remarks 
 
The best complexity currently known on matrix multiplication is O(n2.376) for Coppersmith–Winograd algorithm 
[Cop90]. However, the algorithm is of little practical significance because of the very large constant coefficient 
hidden by the Big O Notation. 
 
Matrix multiplication has a particularly interesting interpretation in counting the number of paths between two 
vertices in a graph. Let A be the adjacency matrix of a graph G, meaning A[i,j]=1 if there is an edge between i 
and j; otherwise, A[i,j]=0. Now consider the square of this matrix, A2 = A×A. If  A2[i,j] ≥ 1, this means that there 
exists a value k such that A[i,k]=A[k,j]=1, so i to k to j is a path of length 2 in G. More generally,  An[i,j] counts 
the number of paths of length exactly n (edges) from i to j. This count includes nonsimple paths, where vertices 
are repeated, such as i to k to i.  

 Additions Multiplications 

Standard algorithm n3 − n2 n3 

Strassen’s algorithm 6n2.81 − 6n2 n2.81 

Winograd’s algorithm  (3n3+ 4n2 − 4n)/2 (n3 + 2n2)/2 
 
Table  4.2 The counts of additions and multiplications for various matrix multiplication algorithms;
the input matrices are of size n×n.  



 

 

 4. Solved Exercises  

1. Use backward substitution to solve the following recurrence: T(1)= O(1); T(n)=T(n/2) + log n.  
Solution: 
 

T(n) =T(n/2) + log n 
      = [T(n/4) + log n/2] + log n 

    = [T(n/8) + log n/4] + log n/2 + log n 

   = T(n/2i) + log n/2i-1  +… + log n/2  + log n 
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The recurrence will reach the base case after log n iterations. Assign log n to i: 
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2. Solve the following recurrence: T(1) = 1; T(n) = T(n−1) + 1/n. 
Solution: 

T(n) = 1/n + 1/(n−1) + 1/(n−2) + ... + 1 ≤ 

 
 

3. Given the recurrence T(n)=4T(n/2)+nk, what is the largest value of exponent k such that T(n) is O(n3)?  
Assume that k ≥ 0. 

  
Solution: Recall the Master Theorem. The solution of T(n) = aT(n/b) + nk  is given as follows: 
 
  T(n) = O(nk)         if a < bk 
  T(n) = O(nk log n)     if a = bk  
  T(n) = O(np), p = logb a  if a > bk  

Here, we have T(n) = 4T(n/2) + nk.  Here p = log2 4 = 2. 
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If k < 2 then a > bk ⇒ T(n)  = O(n2), hence T(n) is O(n3). 
If k = 2 then a = bk ⇒ T(n)  = O(n2 log n), hence T(n)  is O(n3). 
If k = 3 then a < bk ⇒ T(n)  = O(n3),  hence T(n)  is O(n3). 
If k > 3 then a < bk ⇒ T(n)  = O(nk), for k > 3.  Hence T(n) is not O(n3). 
Hence, we conclude that this holds for k ≤ 3. 

 
4. Use the recursion tree to find an upper bound on the solution for the following recurrence (assume that n is  

a power of 7): 
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Solution: Each node in the recursion tree gives rise to five children whereas the height of the recursion tree is 
log7 n. Thus, T(n) corresponds to the following: 
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The solution to the last summation is: 
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T(n) is, therefore, O(n log n). This turns out to be a rather loose bound because of the dropping of “–i” in the 
above derivation. If we note that T(n) ≤ 5T(n/7)+n then, using the Master Theorem, Case 2 applies (because, for 
a=5, b=7, k=1, we have a < bk) and we have T(n) = O(n). Even then, this is not the tightest possible bound. The 
Master Theorem can be restated for the case where the nonrecursive term (in the recurrence) f(n) is not a 
polynomial in terms of n, by essentially comparing the asymptotic order of f(n) to abnlog . We test the ratio 
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= , and find that there is dominance in the denominator. Case 3 applies, so the solution is T(n) 

=O )( 5log 7n . 
 
5. Finding the majority element by elimination of a noncandidate. The majority element exhibits the following 

property: 
 

The majority element is unaffected (i.e., remains the majority in the modified sequence) when we remove one of its 
occurrences and remove one other element. 

 
Now consider two different elements a and b.  If neither of them is the majority, we can safely remove both a 
and b and the majority will be unaffected. Otherwise, if either a or b is the majority, then, by the preceding 
property, we can remove both a and b and the majority will be unaffected. This suggests the following approach 
to finding a majority candidate (FindMC) in a sequence A[1..n]. (Note: After finding a majority candidate, we 
count its total occurrences in the original input to determine whether it is a majority.) 
 



 

 

The elements are scanned from first to last. We use two variables, C (candidate element) and M (multiplicity). 
When we consider A[i], C is the only candidate majority for the sequence A[1..i−1] and M is the number of 
times C occurred in A[1..i−1] less the times C was eliminated. If A[i]≠C then we can remove A[i] and one copy 
of C by skipping over A[i] and decrementing M; otherwise, if A[i]=C, we skip over A[i] and increment M. In this 
process we cannot let M be 0; therefore, C is reset to a new candidate every time M becomes 0. When all 
elements are scanned, we check M. If M = 0, this implies that there is no majority candidate; otherwise, C is a 
majority candidate. The following listing shows the algorithm. 
 
 

 
Input: A positive integer array A[1..n] 
Output: Return the majority element or zero if no majority is found 
 
int Majority(int[] A, int lo, int hi)   
{ int mc = FindMC(A,lo,hi); 
  if (mc > 0)  
    if (Count(A,lo, hi,mc) > (hi-lo+1)/2)  return mc; 
  return 0; 
} 
 
int FindMC(int[] A, int lo, int hi) 
{// return a majority candidate (C) by noncandidate elimination 
 // uses two variables C: candidate element; M: multiplicity of the candidate 
  int C = A[lo];  int M = 1; 
  for(int i=lo+1; i <= hi; i++) 
  {  if (M == 0)  // reset to using a new candidate 
     { C = A[i]; M = 1; } 
     else 
     { if (A[i]== C) M++;  
       else M--;  // remove A[i] and remove one copy of C 
     } 
  } 
  if (M > 0) return C; 
  else return 0; 
} 
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 4. Exercises  
 

1. Using the characteristic equation method, find the solutions for the following three recurrences using 
Θ-notation: 

a. T(n) = T(n–1) – 6T(n–2). 
b. T(n) = 3 T(n–1) –T(n–2) – 3T(n–3). 
c. T(n) = 2T(n–1) – T(n–2). 

 
2. Use the Master Theorem to find the complexity of the following functions: 

a. T(n) = 2T(n/4) + 7n – 15. 
b. T(n) = 9T(n/3) + 3n2 + 5n + 16.  
c. T(n) = 8T(n/2) + 15. 

 
3. In the following problem, assume that n is a power of 3.   
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a. Use the Master Theorem to find asymptotic upper and lower bounds for T(n). 
b. Use a recursion tree to find asymptotic upper and lower bounds for T(n).  
c. Use induction to verify your upper and lower bounds. 

 
4. Solve the recurrence T(n) = 2T( n )+ log2 n. Hint: Consider using change of variable twice.  

5. In the following problem, you may assume that n is a power of 3. Suppose there are three alternatives for 
dividing a problem of size n into smaller-size subproblems: If you solve three subproblems of size n/2, then 
the cost for combining the solutions of the subproblems to obtain a solution for the original problem is 
Θ(n2 n ); if you solve four subproblems of size n/2, then the cost for combining the solutions is Θ(n2); if 
you solve five subproblems of size n/2, then the cost for combining the solutions is Θ(n log n). Which 
alternative do you prefer and why?  

 
6. Given the recurrence: T(n) = T(n/2) + 3T(n/3) + 4T(n/4) + 7n2, complete the following:  

a. Show that T(n) = O(n3). 
b. Show that T(n) = Ω(n3/2). 

 
7. Use the Master Theorem to solve the recurrence: T(n)=9T(n/3)+(n+2)(n−2). Assume that T(1)=1, and that n 

is a power of 3. 

8. Show how the Makeheap algorithm given in Section  2.2 can be derived using a divide-and-conquer 
approach. In this context, write a top-down recursive version of the algorithm and the recurrence equations 
for its running time.  

9. Show that if there are 26 coins with one counterfeit coin (either heavier or lighter than a genuine coin), the 
counterfeit coin can be found in three weighings. Generalize this to find an expression for the number of 
weighings needed to find the counterfeit coin among n coins. Hint: Consider dividing the pile into three 
parts of about n/3 coins each. 



 

 

10. The straightforward algorithm of scanning an array of n elements twice to return the largest element and the 
second-largest element does (n−1)+(n−2) comparisons. Design an algorithm that does about n+log n 
comparisons. 

11. Show that for a sorted input sequence A[1..n], the majority element can be found using at most n/2+2 
comparisons. Hint: For a sorted input, which position is guaranteed to contain the pivot element? 

12. Given a sorted array of distinct integers A[1..n], an index i is called an anchor if A[i]=i. Design a divide-
and-conquer algorithm for finding an anchor in A[1..n] if one exists. Your algorithm should run in O(log n) 
time.   

 
13. Consider the divide-and-conquer majority algorithm given in Section  4.4. Given an input of n distinct 

elements, show that the algorithm does 2n comparisons (counting only the comparisons that are executed 
by the Count() method). Does this result depend on n being a power of 2? 

 
14. Consider the divide-and-conquer algorithm for polynomial multiplication given in this chapter. Given A(x) 

= 1 + 2x + 4x2 + x3 − 2x4 and  B(x) = 3 − x + 2x2 + 3x3 + 6x4, find the polynomials A0(x), A1(x), B0(x), and 
B1(x). Also, find the expression for A(x)B(x) in terms of these polynomials as computed by the algorithm. 

 
15. Consider the following ThreeSort() algorithm: 
 

ThreeSort(A{i..j]) 
{ n = j-i+1; // number of elements 
  if (n==1) return; 
  if (n==2) and (A[i] > A[j]) then swap A[i] with A[j] 
  else if (n > 2) 
  {  third = round(n/3); 
     ThreeSort(A[i..j-third]); // sort first 2/3rds 
     ThreeSort(A[i+third..j]); // sort last 2/3rds 
     ThreeSort(A[i..j-third]); // sort first 2/3rds 
  } 
} 

 
Let C(n) be the worst case number of element comparisons performed by the preceding algorithm. 

a. Find the recurrence equations for C(n) including base equations. 
b. Use master theorem to find a Θ–expression for C(n).   

  

16. A Latin square is an n×n grid where each row and column contains the numbers 1 to n. Design a divide-
and-conquer algorithm to construct a Latin square of size n (assume n is a power of 2). 

 
17. Suppose you are given an unsorted array A of integers in the range 0 to n except for one integer, denoted as 

the missing number. Assume n=2k−1. Design an O(n) divide-and-conquer algorithm to find the missing 
number. 

 
18. Let A be an integer array consisting of two sections, one with numbers increasing followed by a section 

with numbers decreasing. Design an O(log n) algorithm to find the index of the maximum number.  
Hint: Divide the array into three equal size sections and devise a way to safely throw away one of them.   

 
19. You are given a sequence of numbers A = a1, a2, …, an. An exchanged pair in A is a pair (ai, aj) such that i 

< j and ai > aj. Note that an element ai can be part part of  m exchanged pairs, where  m  is ≤  n−1, and that 
the maximal possible number of exchanged pairs in A is n(n−1)/2, which is achieved if the array is sorted in 
descending order. Develop a divide-and-conquer algorithm that counts the number of exchanged pairs in A 
in O(n log n) time. Argue why your algorithm is correct, and why your algorithm takes O(n log n) time. 
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20. A number is simple if it consists of repeated decimal digits. For example, 3333 and 7777 are simple 

numbers. Devise an algorithm to multiply two n-digit simple numbers in O(n) time, where we count a one-
digit addition or multiplication as a basic operation. Hint: Use divide-and-conquer. To justify the running 
time, give a recurrence (and its solution) for your algorithm. You may assume that n is a power of 2. 

 
21. Show how Strassen’s algorithm computes the matrix product of the following matrices. 
 

a.  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

24
13

A ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
25
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B  

b.  
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⎟
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⎞

⎜
⎜
⎜

⎝

⎛

−
=
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A ,  
⎟
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⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−=
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B  

 
22. Assume you are given the procedure Strassen(A,B,n) which implements Strassen’s algorithm. Recall that 

the procedure computes the product of two square matrices A and B of size n×n.  
 

a. By calling Strassen(A,B,n), show how to multiply an n×kn matrix by a kn×n matrix for integer k > 1. 

b. By calling Strassen(A,B,n), show how to multiply a kn×n matrix by an n×kn matrix for integer k > 1. 

 
Briefly describe your algorithm and analyze its time complexity as a function of n and k.  



 

 

5. Dynamic Programming 

As an algorithm-design technique, dynamic programming centers around expressing S(n), the solution to a 
problem of size n, in terms of solutions to subproblems S(k) for k < n. Often there needs to be further parameters 
for S(n) such as S(n,r). Thus S(n,r) = f(S(n',r'), S(n",r"), ... ).  However, a direct recursive approach to solving 
such a problem based on the recursive formulation would result in encountering certain instances of 
subproblems more than once, which often leads to an exponential-time algorithm. To avoid this, it is a 
characteristic of dynamic programming that the recursive formulation is subsequently transformed into a 
bottom-up iterative implementation that does store and subsequent lookup of solutions to subproblems. We 
illustrate the technique through several dynamic-programming algorithms for different problems.  
 
The development of dynamic programming is credited to Richard Bellman (1920-1984) who gave the technique 
its name [Bel57]. However, in the 1950s computer programming was in its infancy and the phrase dynamic 
programming has little to do with computer programming as we know it today. According to Bellman’s 
accounts, he used the word programming as a synonym for planning and dynamic as a synonym for time-
varying. 
 
5.1 Computing the Binomial Coefficients 
 

The number of subsets of size r chosen from of a set of size n is denoted by C(n,r)≡ ⎟
⎠
⎞

⎜
⎝
⎛

r
n — read as “the 

combination of n elements chosen r at a time” or, more simply, “n chose r” — where n and r are nonnegative  
integers and 0 ≤ r ≤ n. For example, C(4,2) is the number of subsets of size 2 chosen from a 4-element set. In 
this case, C(4,2)=4*3/2!=6, which is equivalent to counting the subsets of size 2 chosen from the set {a,b,c,d} 
— there are 6 subsets, namely {a,b}, {a,c}, {a,d}, {b,c}, {b,d}, and {c,d}. 
 
The C(n,r)s are known as the binomial coefficients because they appear as the factors in the expanded form of  
the binomial (x+y)n; namely, 
 

(x+y)n = C(n,0) xny0 + C(n,1) xn-1y1 + … + C(n,i) xn-i yi  + … + C(n,n) x0yn. 
 
Given n and r, C(n,r) can be evaluated using Equation 5.1. However, an alternative formula that does not 
involve multiplication or division is given by Equation  5.2. This formula is an example of a combinatorial 
identity and is known as Pascal’s Identity.  
 

C(n,r) = n! / ((n–r)! r!) = (n (n–1) ...  (n–r+1)) / r!      5.1
C(n,r) = C(n–1,r–1) + C(n–1,r)       5.2

 
The justification for Pascal’s Identity is rather simple. Consider the n-th element and its presence in the subsets 
of size r; the subsets of size r either include or exclude the n-th element.  If the n-th element is chosen, we have 

to choose the remaining r–1 elements from the first n–1 elements, which can be done in ⎟
⎠
⎞

⎜
⎝
⎛

−
−

1
1

r
n

 ways. On the 
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other hand, if the n-th element is not chosen, we have to choose r elements from the first n–1 elements, which 

can be done in ⎟
⎠
⎞

⎜
⎝
⎛ −

r
n 1

  ways. 

The recursive formula in Equation  5.2 5.1 gives the basis for a recursive algorithm, but we need some base cases. 
Through the reduction process, the second parameter might reach zero and, in this case, the number of subsets of 
size zero is 1 (i.e., there is only one subset; namely, the empty set). Thus, Equation  5.3 is an appropriate base 
case. Furthermore, we do not like to deal with cases where the second parameter exceeds the first parameter — 
this happens because the second term in the RHS of Equation  5.2 allows the first parameter to decrease while 
the second parameter remains unchanged. Hence, we use Equation  5.4 as one more base case. 

 
C(n,0) = 1      5.3
C(n,n) = 1      5.4

 
Equations 5.2,  5.3, and   5.4 readily translate into the following recursive (and novice) algorithm: 

 
int C(int n, int r) 
{  if (r==0) return 1; 
   else if (n==r) return 1; 
   else return C(n-1,r-1)+C(n-1,r);   
} 

 
However, there is a major source of inefficiency in this recursive algorithm. It is not difficult to see that certain 
subproblem instances (a pair of (n,r) values for the input parameters defines an instance) are being solved more 
than once.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.1  The tree of recursive calls for computing C(5,3) using a novice recursive algorithm. 

 
As illustrated in Figure  5.1, we see that the subproblems C(3,2) and C(2,1) are encountered more than once 
(repeated occurrences are marked with *). Therefore, this algorithm will end up solving a large number (much 
more than necessary) of subproblems. We already know that there are (n+1)×(r+1) different problems because 
the domain for the first parameter is [0,n] and for the second parameter is [0,r]. Wouldn’t it be more efficient to 
evaluate C(n,r) bottom-up (from the smallest-size subproblem to the largest-size subproblem) and remember 
previous solutions? We can use an (n+1)×(r+1) table (matrix) where the (i,j)-entry stores the solution for C(i,j).  

C(4,2) C(4,3)

C(3,3) C(3,2) C(3,2) C(3,1) 

C(2,1) C(2,1) C(2,2) C(2,0) 

C(1,1) C(1,0) C(1,1) C(1,0) 

* 

   base case       *  repeated subproblems    

* 

C(5,3)



 

 

As illustrated by Figure  5.2, the solution becomes simply filling a matrix one row at a time, where each row 
corresponds to a value of the first parameter. The corresponding iterative algorithm is given in Listing  5.1. This 
algorithm computes at most (n+1)×(r+1) matrix entries requiring a constant time per entry. Therefore, the 
algorithm has Θ(nr) running time.  
 
Spacewise, we observe that this algorithm has Θ(nr) space complexity. However, the space complexity can be 
reduced by noting that in computing the i-th row, we only need the (i−1)-th row and no other rows. This 
suggests that the algorithm be modified as given in Listing  5.2, where we use a matrix with 2 rows × (r+1) 
columns leading to Θ(r) space complexity. 
 

 

 

 

 

 

 

 

 

 

 
 

Figure  5.2 The matrix C[0..n, 0..r] corresponding to bottom-up evaluation of C(n,r). 
 
 

 
// returns the binomial coefficient C(n,r) 
int Comb(int n, int r) 
{ int[,] C = new int[n+1,r+1]; // C matrix is (n+1) rows × (r+1) columns 
  C[0,0] = 1;  
  for(int i=1; i <= n; i++) 
    for(int j=0; j <= r; j++)  
      if (j==0) C[i,j] = 1;  
      else if (j==i) C[i,j] = 1; 
      else if (j< i) C[i,j] = C[i-1,j-1] +  C[i-1,j]; 
  return C[n,r]; 
} 

 
Listing  5.1 An iterative algorithm to compute C(n,r) using Θ(nr) time and Θ(nr) space.  

 

 
0 1 2 3 4 … r 

0 1       
1 1 1      
2 1 2 1     
3 1 3 3 1    
4 1 4 6 4 1   
:        
n        

      j 
  i 

C(n,r) is C[n,r] 
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// returns the binomial coefficient C(n,r) 
int Comb(int n, int r) 
{ int[,] C = new int[2,r+1]; // C matrix is 2 rows × r+1 columns 
  int cur_row, prev_row; 
  C[0,0] = 1; 
  for(int i=1; i <= n; i++) 
  { cur_row = i % 2; prev_row = (i-1) % 2; 
    for(int j=0; j <= r; j++)  
      if (j==0) C[cur_row,j] = 1;  
      else if (j==i) C[cur_row,j] = 1; 
      else if (j< i) C[cur_row,j] = C[prev_row,j-1] + C[prev_row,j]; 
 } 
 return C[n % 2,r]; 
} 

 
Listing  5.2 An efficient algorithm to evaluate C(n,r) using Θ(nr) time and Θ(r) space.  



 

 

5.2 The 0/1-Knapsack Problem 
 
The Knapsack problem is modeling the situation where a burglar enters a house and he finds a collection of 
items of various values and sizes (or weights). The thief likes to pack his sack with as many items as the sack 
capacity permits while maximizing the value of the items collected. More formally, given a sack with capacity C 
and n items with values ν1, ν2,  ..., νn  and, respectively, sizes s1, s2, ..., sn. Let S denote a subset of {1, 2, …, n}. 
The 0/1-knapsack problem is to find S, where, 
 

∑
∈

=
Si

i
Sallover

vSfMaximize )(  
Subject to: 
 

           Cs
Si

i ≤∑
∈

 
 
The knapsack problem is an example of an optimization problem, where the goal is to maximize (or minimize) 
some expression subject to some constraints. The expression to be maximized (or minimized) is known as the 
objective function. There are several versions (variants) of the knapsack problem. The problem stated here is 
known as the 0/1-knapsack problem. This version is characterized by having a single instance of each item and 
the decision regarding each item is either to add or not to add to the sack.  
 
A brute-force approach to solve this problem will enumerate all possible subsets S, one at a time, and for each S, 
check the constraint and compare f(S) with the maximum-value found thus far. This will have Ω(2n) running 
time because it has to generate and examine 2n subsets. Thus, we conclude that using such an algorithm is only 
feasible if n is small, for example, n ≤ 30. Let us try dynamic programming.  
 
In dynamic programming, the solution to a problem is viewed as a series (sequence) of decisions. We note that 
the decision regarding the i-th item is whether to include it in the sack; this is partly dependent on the sack 
capacity. Thus, we define V(i,j) as the maximum value obtained by considering items {1,2, ..., i} and a sack of 
capacity j. This implies that the solution to the original problem is given by V(n,C). 
 
Next, for size reduction, we have to relate V(i,j) to V(i–1,j'). How? Well, V(i,j) considers one more item (the i-th 
item) in relation to V(i–1,j'). If the i-th item is not included in the solution for V(i,j), V(i,j) is simply V(i–1,j); 
otherwise, if the i-th item is included, we get its value νi plus V(i–1,j–si) — the maximum value of filling the 
remaining sack capacity (j–si) with items {1, 2, ..., i–1}. Note that we can include the i-th item only if the sack 
capacity permits, i.e., if j ≥ si. Because our goal is to maximize the value of items picked, the choice whether to 
include the i-th item is resolved in favor of the choice that leads to a higher value, which leads to Equation  5.5. 
Finally, as base cases, we need Equation  5.6, where V(i,j) = 0 if we are to consider none of the items (i=0) or the 
sack has zero capacity (j=0). 
  

V(i,j) = maximum of { V(i–1,j),   (if j ≥ si)  V(i–1,j–si) + νi }    5.5

 V(i,j) = 0  if  i = 0  or  j = 0    5.6
 
 
Implementation and Complexity Analysis 
 
The preceding recursive formulation should not be implemented using recursion because it will lead to the same 
problem we saw earlier with evaluating the combination formula; namely, many subproblem instances will be   
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encountered repeatedly. Therefore, we resort to a bottom-up iterative implementation. In this case, the solution 
is simply to fill a matrix V[0..n,0.. C], where the entry V[i,j] corresponds to V(i,j). The matrix needs to be filled 
row-wise (because a row corresponds to a level in the tree of recursive calls) starting from row 0 (the base case).  
The iterative algorithm is given as the Iterative_KS() method shown in Listing  5.3.  
 
It is clear that the order of running time is Θ(nC). Clearly, this algorithm is much faster than the brute-force 
algorithm because nC is a much smaller number than 2n for large n. But is this algorithm fast enough for large 
input? Well, for large n (for example, n=100,000) and relatively small C (for example, C=100), this algorithm 
will compute a matrix of 10 million entries, which is expected to finish in a few seconds (filling an entry 
corresponds to about 10 instructions; theses days, a typical processor can execute 100 million instructions per 
second). What if C is large, for example, C=100,000? In this case, things get ugly. For one thing, the matrix will 
be huge, having a total of 10 billion entries. A computer with only 1 Gigabyte RAM will do lots of swapping 
between physical memory and the swap area on disk and the algorithm will run painfully slow.  
 
The other interesting observation is that every time we double C (i.e., an increase of input-size by 1 bit), the 
running time will double. Thus, we observe that in the expression for the running time nC, the factor C is more 
or less the culprit behind the algorithm’s inefficiency. (Note: Doubling the number of items n requires an 
increase in input size by more than 1 bit because we have to provide size and value information for the 
additional items). Since C is encoded using log C bits, the algorithm running time is Θ(nC)=Θ(n2log C). Thus, the 
running time is exponential in the size of the input expressed in bits. Such an algorithm is said to have 
pseudopolynomial running time. 
 
 

 
Input: Number of items n; sack capacity C; item values v[1..n]; item sizes s[1..n] 
Output: return maximum sack value and the solution matrix V[0..n,0..C]  
 
int Iterative_KS(int  n, int C, int[] v, int[] s, ref int[,] V) 
{ V = new int[0..n,0..C]; 
  for(int j=0; j<= C; j++) V[0,j] = 0;  // Base step 
 
  for(int i=1; i<= n; i++)    
     for(int j=0; j <= C; j++)    
     { V[i,j] = V[i-1,j];  
       if (j >= s[i])  
       { int t = V[i-1,j-s[i]]+v[i]; 
         if (t > V[i,j]) V[i,j] = t; 
       } 
     } 
  return V[n,C]; 
} 

 
Listing  5.3 An iterative algorithm for the 0/1-knapsack problem. 



 

 

Example  5.1 Figure  5.3 shows the matrix representing the solution to the 0/1-knapsack problem for sack 
capacity=16 and four items with sizes: 3, 5, 7, 8 and values: 4, 6, 7, 9. 

 
 

 

 

 

 

 

 

 
Figure  5.3 The matrix V[0..n, 0..C] computed by the dynamic-programming algorithm for the 0/1-knapsack problem.  

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 

2 0 0 0 4 4 6 6 6 10 10 10 10 10 10 10 10 10 

3 0 0 0 4 4 6 6 7 10 10 11 11 13 13 13 17 17 

4 0 0 0 4 4 6 6 7 10 10 11 13 13 15 15 17 19 

        j 
  i 
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5.3 Recovering Solution Components 
 
The first and crucial step to develop a dynamic-programming algorithm is to come up with a proper notation that 
represents the value of the (optimal) solution in terms of the problem’s data. For the 0/1-knapsack problem, this 
is V(i,j) and its associated meaning. As can be seen in the formulation for the 0/1-knapsack problem, it suffices 
that the formulation provides a recurrence equation for the optimal solution as a sum of item values and not the 
items themselves. However, we are also interested in finding the items that achieve the optimal solution. As it 
turns out, the choices regarding the inclusion of any item are already implied in the way various V(i,j) entries are 
computed. A simple process of reasoning backward starting from V(n,C) can be used to recover the items that 
represent the optimal solution. We can compare V(n,C) to V(n−1,C). If V(n,C) > V(n−1,C),  this definitely means 
that the n-th item is part of the optimal solution, and then we can recover the rest of the items by examining 
V(n−1,C−sn). On the other hand, if V(n,C)=V(n−1,C),  we conclude that the n-th item is not part of the optimal 
solution. Note that in the latter case, it is also possible that V(n,C)=V(n−1,C−sn)+vn, which means that the n-th 
item is part of the optimal solution. This is quite plausible because the set of items corresponding to an optimal 
filling of the sack might not be unique. If we are merely interested in recovering one solution set, then we can 
take “V(n,C)=V(n−1,C)” to mean that the n-th item is not part of the solution. Listing  5.4 shows a program 
method KS_Items() that returns (only one set, and not all possible sets) the items representing the optimal 
solution for the knapsack problem.   
 
In summary, we can state the following principle regarding dynamic-programming algorithms. 
 

DP formulation principle: The recurrence formulation for a dynamic-programming algorithm is only for 
the optimal value (of the objective function) and not the items that represent the optimal value. The 
items that represent the (optimal) solution are recoverable by working backward from the solution to the 
recurrence. 

 
 
Input: The solution matrix V; item sizes s[1..n]; sack capacity C 
Output: The items (as space separated string) that represent the optimal solution 
 
string KS_Items(int n, int C, int[] s, int[,] V) 
{  string outstr=""; 
   int j = C; 
   for(int i=n; i > 0; i--) 
     if ( V[i,j] > V[i-1,j] ) 
     { outstr= i + " " + outstr; j = j-s[i]; } 
   return outstr; 
} 

 
Listing  5.4 An algorithm for recovering the items of the optimal solution for the 0/1-knapsack problem.  

 
Exercise  5.1 Modify the algorithm in Listing  5.4 to return not just one set of items, but all sets that correspond to 
the optimal solution. Hint: At a junction point (where the include/exclude choices of an item are both possible) 
gives rise to two solutions (paths), push the partial solution collected thus far into the stack and follow the other 
path to completion. Then process things off the stack. 



 

 

5.4 The Subset-Sum Problem 
 
The following problem is a simplified version of the 0/1-knapsack problem and is known as the subset-sum 
problem.  
 
The Subset-Sum Problem. Given a positive integer K and a set A = {a1, a2, ..., an} of n positive integers, 
determine whether there exists a subset of A whose sum of elements = K. 
 
A brute-force approach to solve this problem by enumerating all subsets of A will have Ω(2n) running time. Such 
an algorithm, because of its exponential time, is practical only for small values of n (i.e., n ≤ 30).   
 
Reducing the Subset-Sum Problem to the 0/1-Knapsack Problem 
 
The subset-sum problem can be viewed as a special case of the 0/1-knapsack problem. Construct an instance of 
the 0/1-knapsack problem with C=K, and n items with the ais being both item values and item sizes. Now, the 
problem becomes: Maximize the sum of a set ais subject to their sum ≤ C. Clearly if there is a solution with the 
sum of item sizes = C, it will be preferred (because it has a higher value for the objective function) over any 
solution whose sum of item sizes < C. After the knapsack problem is solved, we check if the sum of item sizes 
of the optimal solution = C. If so, then the answer is true for the original subset-sum problem; otherwise, the 
answer is false. 
 
A Specialized Dynamic-Programming Algorithm for the Subset-Sum Problem 
 
The subset-sum problem has less data than the 0/1-knapsack problem; therefore, we expect that it has a simpler 
dynamic-programming formulation. As in the formulation for the knapsack problem, we view the solution as a 
sequence of decisions, one decision per element. The decision regarding an element ai is whether the element is 
part of the solution. Thus, let us define SubsetSum(i,m)  is true [false] if there is [is not] a subset of the elements 
{a1, a2, ..., ai} whose sum=m. Clearly, the solution to the original problem is given by SubsetSum(n,K). Next, we 
express SubsetSum(i,m) in terms of SubsetSum(i–1,m'). A true solution for  SubsetSum(i,m)  either includes or 
does not include the i-th element.  For the latter case, SubsetSum(i–1,m) must be true. For the former case, which 
is preconditioned on m ≥ ai, SubsetSum(i–1,m–ai) must be true. This leads us to conclude, as stated by Equation 
 5.7, that SubsetSum(i,m)=SubsetSum(i–1,m) logical-OR SubsetSum(i–1,m–ai). Equation  5.8 specifies the 
appropriate base case. 
 

 SubsetSum(i,m) = SubsetSum(i–1,m)  or  (if m ≥ ai)  SubsetSum(i–1,m–ai)    5.7
 SubsetSum(0,m) = true   if  m = 0; false, otherwise    5.8

 
The bottom-up implementation of this algorithm is given in Listing  5.5. Note that, as in the solution for the  
0/1-knapsack problem, we are using a matrix V[0..n,0..K] to store solutions of subproblems — i.e., V[i,j] 
corresponds to SubsetSum(i,j). Listing  5.6 gives the algorithm for recovering the elements representing the 
solution by working backward from V[n,K].  
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Input: A set of positive integers A[1..n] and a positive integer K 
Output: returns true (and V matrix) iff there is a subset whose sum of elements = K 
 
bool SubsetSum(int[] A, int  n, int K, ref int[,] V) 
{  V = new int[n+1,K+1]; 
   V[0,0] = true; 
   for(int j=1; j <= K; j++) 
      V[0,j] = false; 
 
   for(int i=1; i <= n; i++) 
      for(int j=0; j <= K; j++)  
      { V[i,j] = V[i-1,j]; 
        if (! V[i,j])  
          if (j >= A[i]) V[i,j] = V[i-1,j-A[i]]; 
      } 
   return V[n,K]; 
} 
 

 
Listing  5.5 A dynamic-programming algorithm for the subset-sum problem.  

 
 
  
Input: A set of positive integers A[1..n] and a positive integer K; 
       Boolean solution matrix V 
Output: The elements (as space-separated string) that sum to K 
 
string SetFromV(int[] A, int n, int K, bool[,] V) 
{  string outstr=""; 
   int j = K; 
   for(int i=n; i > 0; i--) 
   if ( V[i,j]  && ! V[i-1,j] ) 
     { outstr= outstr+ " " + A[i]; j = j-A[i]; } 
   return outstr; 
}  

 
Listing  5.6  An algorithm for recovering the elements of a solution to the subset-sum problem.   

 

Example  5.2 Figure  5.4 shows the matrix representing the solution to the subset-sum problem for K=14 and five 
items: 3, 7, 10, 4, 11. 

   

 
 
 
 
 
 
 
 
 
 
 

Figure  5.4 The matrix V[0..n, 0..K] computed by the dynamic-programming algorithm for the subset-sum problem. 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

0 T F F F F F F F F F F F F F F 

1 T F F T F F F F F F F F F F F 

2 T F F T F F F T F F T F F F F 

3 T F F T F F F T F F T F F T F 

4 T F F T T F F T F F T T F T T 

5 T F F T T F F T F F T T F T T 

        j 
  i 



 

 

5.5 Memoization 
 
Recall that the problem with a recursive implementation of a dynamic-programming algorithm is that it will 
encounter repeated subproblem instances. Solving subproblems in the order of smallest size to largest size is one 
way around this problem. This corresponds to the iterative bottom-up approach that we have already discussed. 
Yet there is another way. Why not implement the recursive formulation as is (i.e., as a recursive program 
method) but augment it with a  lookup capability. Thus, if a subproblem instance has already been solved,  then 
lookup its solution; otherwise, solve it and store its solution. This approach is known as memoization (a short 
form for memorization). This technique is illustrated in Listing  5.7, where we modify the dynamic-programming 
algorithm for the subset-sum problem given in the previous section. Note first that we have changed V[i,j] from 
being true/false to having one of three values: −1=unsolved, 0=solution is false, 1= solution is true.   
 
To assess the savings realized from memoization, the program in Listing  5.7 is augmented with the variable sc 
(subproblem count) to count the number of subproblems solved — i.e., the number of times the method 
SubsetSum() is called. The program is used to determine whether there are elements that sum to K=1000 in a set 
of 20 randomly-generated numbers between 10 and 1000. For such input, the bottom-up iterative algorithm 
solves 20,000 subproblems (i.e., the size of the solution matrix not counting the 0-row and 0-column). For the 
memoized algorithm, we find that the subproblem count is less than 1000 most of the time. Note that the 
subproblem count does not account for the initialization of the solution matrix. Of course, initializing all matrix 
entries might undo any savings realized from memoization. A reasonable approach is to run the recursive 
algorithm twice; first to determine and initialize all the needed entries and then run the normal memorized 
version. Another effective approach, which is applicable to implementing memoization in general, is to do away 
with matrix allocation altogether and, instead, use hashing to store the i–j entries that are encountered during 
recursion. We leave the implementation of such an approach as an exercise, which is stated next. 
 
 
 
Exercise  5.2 Modify the program in Listing  5.7 to include SubsetSumHash() method, which is essentially the 
same as SubsetSum(), but uses hashing to store and lookup encountered i–j entries.  
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class SubsetSumMemoization 
{  static int sc=0; // sc for subproblem count 
   static int[] A;  // Input: a set of numbers 
   static int[,] V; // Solution matrix is global 
   
  static void Main(string[] args) 
  { Random rand = new Random(); 
    int n = 20; 
    // Generate n random values between 10 and 1000 
    A = new int[n+1]; 
    for(int i=1; i<=n; i++) A[i] = rand.Next(990)+10;   
 
    int K=1000;   
    V = new int[n+1,K+1]; 
    // Mark all subproblems as being unsolved 
    for(int i=0; i<= n; i++) 
       for(int j=0; j <= K; j++) V[i,j]=-1;  
 
    string prdata = ""; 
    for(int i=1; i<=n; i++) prdata = prdata+ A[i] + " ";  
    
    Console.WriteLine("SubsetSum Problem for {" + prdata+ "} and K=" + K); 
    if (SubsetSum(n,K)==1)  
    {  Console.WriteLine(SetFromV(A, n, K, V)); 
       Console.WriteLine("Subproblem Count:" + sc); 
    } 
    else Console.WriteLine("No solution" ); 
  } 
   
  static int SubsetSum(int i, int j)  // Assume V is global 
  { // Handle base cases 
    if (i==0)  
      if (j ==0) return 1; 
      else return 0; 
     
    // Check if problem is solved before 
    if (V[i,j] != -1) return V[i,j];   
 
    sc++; // Increment subproblem count 
 
// Note: To compute V[i,j] we cannot reference V because we cannot be sure 
// that the needed entry has been computed 
    V[i,j] = SubsetSum(i-1,j);  
    if ((j >= A[i]) && (V[i,j] != 1))  
        V[i,j] = SubsetSum(i-1,j-A[i]);    
    return V[i,j]; 
  } 
 
  static string SetFromV(int[] A, int n, int K, int[,] V) 
  {  string items=""; 
     int j = K; 
     for(int i=n; i> 0; i--) 
       if ((V[i,j]==1) && (V[i-1,j]==0))  
         { items = A[i] +" "+ items; j= j-A[i]; } 
     return "{ " + items + "}"; 
  }         

 
Listing  5.7 A dynamic-programming algorithm for the subset-sum problem implemented using memoization.    



 

 

5.6 Longest Common Subsequence 
 
Before we present the longest common subsequence problem, let us consider a similar but simpler problem. As 
in the string search problem  (Section 2.4.7), we are given a short string (pattern) and long string (text), but now 
we are to find if the letters of the pattern appear in order (but possibly separated) in the text. If they do then the 
pattern is said to be a subsequence of the text. As an example, “ping” is a subsequence of “expert in 
programming”. To easily see this, we can italicize the subsequence matching with the pattern at the appropriate 
places in the text as: “exPert IN proGramming”. In general, we can do this using a finite automata (finite-state 
machine), as shown by Figure  5.5.  
 

 
 
 
 
 
 

 
Figure  5.5 A finite automata for solving an instance of the subsequence problem.  

 
The primary step is the reading of the next character from the input text and matching it with the current 
character from the pattern but we only advance along the pattern upon matching. This step is repeated until the 
last character of the pattern is matched (in which case the pattern does appear as a subsequence in the text) or we 
reach the end of the text. Thus, the solution is given by the following procedure: 
 

bool SubSeq(string pat, string txt) 
{ int i = 0; // i ranges over txt 
  int j = 0; // j ranges over pat 
  while ((i < txt.Length) && (j < pat.Length)) 
  { if (txt[i] == pat[j]) j++; 
    i++; 
  } 
  return (j == pat.Length); 
} 

 

The Longest Common Subsequence Problem 
 
What if the pattern does not occur in the text? In this case, we are interested in finding the longest subsequence 
that occurs both in the pattern and in the text. This is the longest common subsequence problem. Because the 
pattern and the text have symmetric roles, we will not distinguish between them and simply call them sequences 
A and B. Note that the previous automata-based method does not solve the problem; it only gives the longest 
prefix of A (the pattern) that is a subsequence of B, but the longest common subsequence of A and B is not 
always a prefix of A.  
 
There are several applications where the longest common subsequence problem is encountered. A good example 
is in molecular biology. DNA sequences (genes) can be represented as sequences of four letters ACGT, 
corresponding to the four submolecules forming DNA. When biologists find a new sequence, they need to know 
what other sequences it is most similar to. A reasonable measure of how similar two sequences are would be the 
length of the longest common subsequence.    

Let us now formalize a dynamic-programming algorithm for the longest common subsequence (LCS) problem. 
Assume that the input is given by the sequences A= a1, …, am and B= b1, …, bn. Let lcs(i,j) be the length of the 
longest common subsequence of a1, …, ai and b1, …, bj. If  ai = bj, then lcs(i,j) = lcs(i−1,j−1)+1; this is because 
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we can append ai (=bj) to the LCS of A[1..i−1] and B[1..j−1]. Otherwise, we have to disregard  ai or bj; thus,  
lcs(i,j) = maximum { lcs(i,j−1),  lcs (i−1,j) }. We also need to supply the appropriate base cases: lcs(0,j)= lcs(i,0) 
=0 (i.e., the longest common subsequence is empty (of length 0) if either A or B is empty). In summary, the 
algorithm is given by the following: 
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Note that there are only (m+1)×(n+1) possible subproblems because there are only m+1 choices for i and n+1 
choices for j. Hence, by treating the lcs(i,j)s as matrix entries (instead of recursive calls) and computing these 
entries in the appropriate order,  we get the following Θ(mn)-time algorithm.  
 

int LCS(char[] A, int m, char[] B, int n)  
{// Assume the input is given by char arrays: A[1..m] and B[1..n]  
    int[,] L = new int[m+1,n+1]; // L matrix is (m+1) rows × (n+1) columns 
    for(int i=0; i <= m; i++) 
       for(int j=0; j <= n; j++)  
         if((i==0) || (j==0)) L[i,j] = 0;  
         else if (A[i]==B[j]) L[i,j] = 1 + L[i-1,j-1]; 
         else L[i,j] = max { L[i-1,j] , L[i,j-1] }; 
    return L[m,n]; 
} 

 
The preceding algorithm is Θ(mn) space but it can be modified to be Θ(minimum(m,n))— see problem 4 in  the 
end-of-chapter exercise.  
 
Example  5.3 Figure  5.6 shows the matrix representing the solution to the longest common subsequence of the 
strings “singer” and “programmer”. Clearly, the longest common subsequence is “ger”, which is of length 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.6 The matrix L[0..m, 0..n] derived from the DP recurrence for the longest common subsequence problem.  
 
 
 

 0 1-p 2-r 3-o 4-g 5-r 6-a 7-m 8-m 9-e 10-r 

0 0 0 0 0 0 0 0 0 0 0 0 

1-s 0 0 0 0 0 0 0 0 0 0 0 

2-i 0 0 0 0 0 0 0 0 0 0 0 

3-n 0 0 0 0 0 0 0 0 0 0 0 

4-g 0 0 0 0 1 1 1 1 1 1 1 

5-e 0 0 0 0 1 1 1 1 1 2 2 

6-r 0 0 0 0 1 2 2 2 2 2 3 

        j 
  i 



 

 

Exercise  5.3 Rewrite the recurrence for the LCS problem given above to avoid using (for any of its parameters) 
the empty sequence as a base case and use 1-element sequence instead.  
 
Exercise  5.4 Modify the program code given previously into a CSharp program method lcstr(A,B) that returns  
a longest common substring of the input strings A, B. Hint: First, compute the matrix L and then trace the path 
backward from L[m,n].   
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5.7 Weighted-Interval Scheduling 
 
Suppose we have a resource (such as a conference hall) that is to be shared. There are n requests for room 
reservations; each request has a specified start time si and finish time fi. Also, each request has a weight (value) 
vi. Two requests are compatible if their intervals do not overlap. A feasible schedule is a set consisting of 
compatible requests. In relation to the example of Figure  5.7, {1,3,6} is an example of a feasible schedule with 
value = v1+v3+v6 = 2+4+3=9. The problem has several versions (variants), depending on the objective, as 
follows: 
 

1. Version 1: Find a schedule that maximizes the value of scheduled requests. 
2. Version 2: Find a schedule that maximizes the number of scheduled requests. 
3. Version 3: Find a schedule that maximizes resource utilization (i.e., minimizes the resource dle-time). 

 
 
 

  

 

 

 

 
 
 
 

 
 

Figure  5.7 An instance of the weighted-interval scheduling problem; requests have been ordered by their finish time 
(i.e.,  f1 ≤ f2  ≤ ... ≤ fn). 

 
Version 1 is the weighted-interval scheduling problem. Versions 2 and 3 can be viewed as special cases of 
version 1. Version 2 is obtained by setting vi =1 for all requests. For version 3, we set vi = fi–si — that is, vi is set 
to the duration of the i-th request. We proceed to develop a dynamic-programming algorithm for the general 
version.  Note: We will discuss Version 2 and other similar scheduling problems in Section  6.4. 
 
Let V(i,t) be the maximum value obtained by considering requests 1, 2...i and having a schedule that finishes in 
time t. The solution to the original problem is V(n, maximum{f1,f2, …, fn}). This suggests that the n-th request 
that should be considered is the one with the maximum finish time. Again, if the n-th request is not included, 
then the maximum value is obtained by having t set as large as possible (i.e., maximum of {f1,f2, …, fn-1}).  
Therefore, for the following formulation, we will assume that requests have been ordered (in nondecreasing) 
order by their finish time. Thus, the solution to our problem is V(n,fn). Now, V(i,t) involves the decision of 
whether to include the i-th request in the schedule combined with V(i−1,t'). Note that if the i-th job is included, 
then t' (the time by which all earlier jobs must finish) is si (or less, of course). Thus, 

V(i,t) =  maximum { V(i−1, t),  vi + V(i−1, si)  if  t ≥ fi };  Base case, V(0, t) = 0. 
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Example  5.4 V(i,t) can be computed in a bottom-up fashion, as illustrated in Figure  5.8.  
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure  5.8 A solution to the weighted-interval scheduling problem given in Figure  5.7.  

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 

2 0 0 0 0 2 2 2 2 5 5 5 5 5 5 5 5 

3 0 0 0 0 2 2 2 2 5 5 6 6 6 6 6 6 

4 0 0 0 0 2 2 2 2 5 5 6 6 7 7 7 7 

5 0 0 0 0 2 2 2 2 5 5 6 6 7 7 8 8 

6 0 0 0 0 2 2 2 2 5 5 6 6 7 7 8 10 

       t 
  i 
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5.8 Principle of Optimality 
 
In the dynamic-programming formulation for optimization problems we have seen thus far, we have utilized a 
recursive formulation that expresses the optimal solution to a problem in terms of the optimal solution to the 
same smaller-size problem (subproblem). This is an important characteristic of dynamic programming and is 
known as the principle of optimality. In situations where the optimal solution is dependent on nonoptimal 
solutions to subproblems, and we formulate the algorithm accordingly, then there would not be any time 
savings. In such cases, we might as well generate and examine all solutions from the start. Therefore, we use 
dynamic programming only in situations where the optimal solution to a problem is expressible in terms of the 
optimal solution to the subproblems. The principle of optimality is normally stated as follows: 
 

Principle of Optimality (POP): In the sequence of decisions that represent the optimal solution, any 
subsequence is optimal.  
 

Consider the shortest-path problem in a weighted graph. The problem calls for finding the path of shortest 
length from some specified vertex a to another specified vertex b, where the length of a path is defined to be the 
sum of the weights of its edges. As illustrated by Figure  5.9, assume that the shortest path from vertex a to 
vertex b is as shown by the solid curved lines. Now consider the portion P of this path from vertex u to vertex v. 
Is P the shortest path from u to v, or is there the possibility of a shorter path (the dotted line)? We can 
immediately rule out the latter possibility because if the dotted path exists then we can have it replace P, and 
thus obtain a shorter path from a to b, contradicting the fact that the solid lines that go from a to b represent the 
shortest path. 
 
 
 
 
 
 
 
 
 

Figure  5.9 A graph illustrating that the shortest-path problem satisfies the principle of optimality.  

 
Not all problems satisfy the principle of optimality. One such problem is the longest simple path (LSP) problem, 
which is to find such a path from one vertex to another in a weighted graph. A path is simple if it has no 
repeated vertices. A simple path avoids cycles whose presence leads to paths with infinite cost because a cycle 
can be traversed an arbitrarily large number of times. Now, we ask, “Does the longest simple path problem 
satisfy the principle of optimality?” The answer is No. This is illustrated by Figure  5.10. In this case, the longest 
simple path from a to d is a, b, c, d; yet, the portion of this path from a to b — that is, the edge (a,b) — is not the 
longest simple path from a to b because the path a, d, b is a longer simple path from a to b than the edge (a,b). 
This shows that the LSP problem does not satisfy the principle of optimality. Let us see what happens when we 
replace a part of an optimal solution with the optimal solution for that part. If we try to replace the edge (a,b) on 
the path a, b, c, d by the path a, d, b then we get the path a, d, b, c, d. The resulting path is indeed longer than 
the path a, b, c, d but it is not simple because vertex d appears twice. This shows that the argument we have used 
to argue POP for the shortest path does not hold for the longest simple path. 

a u b v 

This portion P from u to v is of length C 

This portion from u to v is of length < C 



 

 

 
 
 
 
 
 
 
 

 
 

Figure  5.10 A graph illustrating that the longest simple path problem violates the principle of optimality. 
 

In general, the principle of optimality might not hold in situations where the optimal decision at some state is not 
only dependent on the state but also on how that state is reached. As an example, suppose that car drivers pay 
tariffs for using long-distance roads that go between cities but the tariff charged depends on other roads that the 
driver passed through on his journey during the day. To use dynamic programming in such situations, we have 
to redefine the problem’s state, somehow, to include the past history. 

The principle of optimality is also referred to as the optimal substructure property. 
 
The next two examples are related to the coin-change problem,  where the objective is to determine the 
minimum number of coins needed to change an amount n using (an infinite supply of) coins of denomination d1, 
d2 ... dm.     
 
Example  5.5 The optimal substructure property holds for the coin-change problem. Let S be a minimum-size set 
of coins for an amount n. If we remove one coin of denomination d from S, then S', the set S with this coin 
removed, is a minimum-size set of coins for the amount n–d.  For if there is a set S'' of a smaller size than S' for 
the amount n– d then S'' ∪{d} is a smaller-size set than S for the amount n, which is a contradiction. 
 
The optimal substructure property does not say that if S1 and S2 are optimal solutions to subproblems, then 
combining S1 and S2 gives an optimal solution to the original problem. This is the converse of the optimal 
substructure property. 
 
Example  5.6 Suppose that the available denominations for the coin-change problem are 10, 6, and 1. One coin of 
denomination 1 and one coin of denomination 6 give an optimal solution for the amount 7. Five coins of 
denomination 1 give an optimal solution for the amount 5. Combining these solutions, which results in six coins 
of denomination 1 and one coin of denomination 6, does not yield an optimal solution for the amount 12. 
Clearly, the optimal solution for 12 is to use two coins of denomination 6. Thus, for the coin-change problem, if 
S1 and S2 are optimal solutions, combining S1 and S2 does not necessarily give an optimal solution to the original 
problem. Therefore, the converse of the optimal substructure property does not hold for the coin-change 
problem.  

2 3 
a b c d

1 

2 2 
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5.9 Shortest Paths 
 
In a shortest-paths problem, we are given a weighted directed graph G=(V,E), with weight function w: E→R, 
mapping edges to real-valued weights. The length (weight, cost) of a path p=v0,v1, …,vk is the sum of weights of 

its constituent edges, that is: ∑
=

−=
k

i
ii vvwplength

1
1 ),()( .  

 
The shortest-paths problem calls for finding the paths of minimum length. Edge weights can be interpreted as 
metrics other than distances. They are often used to represent time, cost, penalties, loss, or any other quantity 
that accumulates linearly along a path and that we want to minimize.  
 
Variants of the Shortest-Paths Problem 
 
There are several variants (versions) of the shortest path problem that vary in input and difficulty. We describe 
the basic versions.   
 
1. Single-source shortest-paths problem: Given a graph G=(V,E), we are to find the shortest paths from a given 

source (start) vertex s ∈ V to every vertex v ∈ V. The problem does not ask for a single path that starts at s 
and includes all vertices; rather, it asks for finding |V| shortest paths, one path to each vertex. 

 
2. Single-destination shortest-paths problem: The destination vertex t is fixed, and we are to find the shortest 

paths to t from every vertex v. By reversing the direction of each edge in the input graph, we can reduce this 
problem to a single-source shortest-paths problem.  

 
3. Single-pair shortest-path problem: Given two fixed vertices u and v, find a shortest path from u to v. If we 

solve the single-source shortest-paths problem with source vertex u, we solve this problem also. Moreover, 
no algorithm for this problem is known that runs asymptotically faster than the best single-source algorithms 
in the worst case.  

4. All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v. This 
problem can be solved by running a single-source algorithm once from each vertex; but it can be solved 
faster, and its structure is of interest in its own right.  

 
The Shortest-Paths Problem is Easy 
 
A brute-force approach to solving the single-source shortest-paths problem by enumerating all simple paths that 
start with the source vertex is Ω(n!) becausee there are in the order of n! simple paths in a graph with n vertices. 
Such an algorithm is exponential in n and would take a long time to be of any value in practice. 
 
From an algorithmic perspective, a problem is classified as either easy or difficult (intractable). Any problem 
that is solvable using a polynomial-time algorithm is classified as an easy problem. On the other hand, any 
problem for which there is no known polynomial-time algorithm is normally classified as a difficult problem — 
the use of the word difficult here does not mean the problem is hard to solve; rather, it means that finding a 
solution takes a long time, even for moderate-size input. It turns out that the problem of finding the shortest 
paths is easy. On the other hand, the problem of finding the longest paths on general graphs is difficult. 
However, for acyclic graphs, the longest paths problem is easy — see Section  5.9.3.  
 



 

 

Two Algorithms with a Common Idea 
 
As we have noted earlier, the shortest path problem satisfies the principle of optimality, i.e., the shortest path is 
composed of shortest paths. Therefore, we can choose an appropriate parameter that signifies the path-size and 
then compute the shortest paths in order by path-size from the smallest-size paths to the largest-size paths. 
  
An obvious parameter for the path-size is the count of edges on the path. Using such a parameter means that we 
compute all shortest paths consisting of a single edge, then the shortest paths consisting of two edges, etc. This 
is the Bellman-Ford algorithm [Bel58, For56], which we discuss in Section  5.9.2. Alternatively, a clever (and 
not so obvious) parameter for the path size is the highest-numbered interior vertex on the path. Using such a 
parameter means that we have to compute all shortest paths where the highest-number interior vertex is 1, then 
all shortest paths where the highest number is 2, etc. This is Floyd’s algorithm [Flo62].  
 
The reachability problem is to determine the existence of a path regardless of path length. This problem can be 
solved by Warshall’s algorithm [War62]. Warshall’s algorithm can be seen as a specialized version of Floyd’s 
algorithm. In the next section, we examine Floyd’s and Warshall’s algorithms. 
 
5.9.1 Floyd’s Shortest-Paths Algorithm 
 
Floyd’s shortest-paths algorithm solves the all-pairs shortest-paths problem. The algorithm works correctly 
assuming that the graph does not contain any negative-length cycle. If there is a negative-length cycle, the 
shortest path is not well defined, as the path can be made shorter and shorter by having it trace the cycle again 
and again.  
 
For the all-pairs shortest-paths problem on a graph with n vertices, it is appropriate to represent the output as a 
distance matrix D (n rows × n columns), where D[i,j] is the length of the shortest path from vertex i to vertex j 
for i,j ∈[1,n]. Let Dk[i,j] denote the length of the shortest path from i to j whose interior vertices ∈ {1, 2, …, k}. 
Then, clearly, D[i,j]=Dn[i,j]. Floyd’s algorithm is given by the following recurrence equations: 
 

 D0[i,j] = C[i,j]    // C[i,j] is the cost (weight) of the edge (i, j)           5.9
Dk[i,j] = minimum { Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j] }   5.10

 
The justification for these equations is rather straightforward. Equation  5.9 says that the shortest path form 
vertex i to vertex j having no interior vertices is simply the direct edge from vertex i to vertex j. Equation  5.10, 
on the other hand, says that the shortest path from vertex i to vertex j whose interior vertices ∈{1, 2, …, k} may 
or may not include vertex k. If the path does not include vertex k then the path interior vertices ∈ {1, 2, …, 
k−1}, and by definition, it is of length Dk-1[i,j]. On the other hand, if the path passes through vertex k then, 
assuming the graph does not contain negative-length cycles, k must appear once. This case is illustrated in 
Figure  5.11; the path consists of two paths: a path P1 from vertex i to vertex k with interior vertices ∈ {1, 2, ..., 
k−1}, followed by a path P2 from vertex k to vertex j with interior vertices ∈ {1, 2, ..., k−1}. By the principle of 
optimality, the path P1 must be the shortest path from vertex i to vertex k, and by definition, it is of length 
Dk-1[i,k]. Similarly, P2 is of length Dk-1[k,j].  
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Figure  5.11 The shortest path from vertex i to vertex j whose interior vertices ∈ {1, 2, ... , k} and,  at the same time, 
passes through vertex k.    

 
Note that D0 is simply the adjacency cost matrix. Then, we compute in sequence, the matrices D1, D2, … Dn. 
The matrix Dk is computed from Dk-1 using Equation 5.10, or, visually, in accordance with Figure  5.12. Thus, D1 
is computed from D0 by examining all [i,1] and [1,j] entries, and executing the test: Is (D0[i,1]+D0[1,j]) < 
D0[i,j]? If yes, the entry D1[i,j]  is set to  D0[i,1]+D0[1,j]; otherwise, D1[i,j] is simply D0[i,j].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure  5.12 Floyd’s algorithm: the computation of the (i,j)-entry in Dk. 

 

Let us see an example of how Floyd’s algorithm works. Figure  5.13 shows a directed weighted graph, the 
corresponding adjacency cost matrix C, and the various D matrices computed by Floyd’s algorithm.  
 
We should note that in computing the matrix Dk, the entries in the k-th row and the k-th column will remain 
unchanged from the previous matrix, Dk-1  — to see this, compute Dk[k,i] and Dk[j,k] using the general recurrence.   
Becuse in updating other entries, we only need the entries in the k-th row and the k-th column and that these 
precise entries are not affected during the computation of Dk, the newly computed entries for Dk can be 
immediately stored back in Dk-1. In other words, it suffices to maintain a single copy of the D matrix, and for a 
given k, we execute the test: Is (D[i,k]+D[k,j]) < D[i,j]? If yes, the entry D[i,j] is set to D[i,k]+D[k,j]. This leads 
to concise program code for Floyd’s algorithm, which is given in Listing  5.8. 
 
Recovering the Shortest Paths 
 
To recover the shortest paths, we can utilize the Pred (short for Predecessor) matrix, where Pred[i,j] is the 
vertex immediately preceding vertex j along the shortest path from vertex i to vertex j. If Pred[i,j] is known for 
all pairs of vertices, then the shortest path from any vertex i to any other vertex j is simply (from vertex j 
backward): j, x1=Pred[i,j],  x2=Pred[i, x1], … until reaching xk = i.  
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The Pred matrix is computed gradually; every time we have a better estimate for the shortest path from i to j, we 
update the entry Pred[i,j]. In Listing  5.8, the modification of Floyd’s algorithm to compute the Pred matrix is 
reflected by the statements shown in bold.   
 
To get the sequence of vertices representing the shortest path from vertex i to vertex j, we invoke the function 
GetPath(i,j). This function is recursive and is based on the fact that the shortest path (as a vertex sequence) from 
vertex i to vertex j is the shortest path from vertex i to Pred[i,j] followed by vertex j. Note that GetPath is passed 
the Pred matrix as one of its arguments. In particular, using the Pred matrix for the example given in Figure 
 5.13, we find that the shortest path from vertex 4 to vertex 1 is given as (in order from last vertex to first vertex): 
1, Pred[4,1]=2, Pred[4,2] = 3, Pred[4,3] = 5, Pred[4,5] = 4. In other words, the shortest path from 4 to 1 is:  4, 
5, 3, 2, 1 with a cost (length) = 3+2+7+3 = 15. 
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Figure  5.13 A weighted graph and the various D matrices computed by Floyd’s all-pairs shortest-paths algorithm. 
Affected entries are shown as underlined. Entries in parentheses are for the Pred matrix.    
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Input: Number of vertices n; adjacency cost matrix C[1..n,1..n] for a directed graph 
Output: Distance matrix D[1..n,1..n]; Predecessor matrix Pred[1..n,1..n]  
 
void Floyd(int n, int[,] C,ref int[,] D, ref int[,] Pred) 
{ // Allocate space for matrices D and Pred 
  D  = new int[n+1,n+1]; 
  Pred = new int[n+1,n+1]; 
  // Initialization: Set D to D0 = C 
  for(int i=1; i <= n; i++) 
    for(int j=1; j <= n; j++) 
    {  D[i,j] = C[i,j]; 
       Pred[i,j] = i;  // for recording the shortest path 
    } 
  // Compute in order, D1, D2, ... Dn 
  for(int k=1; k <= n; k++) 
    for(int i=1; i <= n; i++) 
      for(int j=1; j <= n; j++) 
      {  int t = D[i,k] + D[k,j];   
         if (t < D[i,j]) 
         {  D[i,j] = t;  
            Pred[i,j] = Pred[k,j]; // for recording the shortest path 
         } 
      }  
} 
 
string GetPath(int i, int j, int[,] Pred) 
{ // returns, as string, a list (space separated) of vertices representing  
  // the shortest path from vertex i to vertex j 
  if (i == j) return i.ToString(); 
  else return GetPath(i,Pred[i,j], Pred) + " " + j; 
} 

 
Listing  5.8 Floyd’s algorithm for all-pairs shortest-paths problem. 
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Warshall’s Transitive Closure Algorithm 
 
In certain applications, we are given a digraph G and we are only interested in determining whether there exists 
a path (regardless of its length) from vertex i to vertex j for all the vertices i, j  in G. Floyd’s algorithm can be 
specialized to this problem; the resulting algorithm, which happens to predate Floyd’s, is due to Warshall 
[War62].  
 
Suppose our cost matrix C is just the adjacency matrix for the given digraph. That is, C[i,j]=1 if there is an edge 
from i to j, and 0 otherwise. We wish to compute the Boolean matrix A such that A[i,j]=1 if there is a path from i 
to  j, and 0 otherwise. The matrix A is known as the transitive closure of the adjacency matrix C. The matrix A is 
the reachability matrix of its underlying graph because A[i,j]=1 if and only if j can be reached from i by a path 
in the graph. 
 
The transitive closure can be computed using an algorithm similar to Floyd’s algorithm. Let Ak[i,j]=1 if (and 
only if) there is a path  from i to j whose interior vertices ∈ {1, 2… k}. Then, clearly, A[i,j]=An[i,j].  Warshall’s 
algorithm uses the following recurrence equations. 

 
A0[i,j] = C[i,j]      5.11
Ak[i,j] = Ak-1[i, j ]  or  (Ak-1[i, k] and Ak-1[k, j])        5.12

 

The preceding equations readily translate into the program code given in Listing  5.9. 

  
 
Input: Number of vertices n; adjacency matrix C[1..n,1..n] for a directed graph 
Output: Transitive closure matrix A[1..n,1..n]  
 
void  Warshall(int n, int[,] C,ref int[,] A) 
{ // Allocate space for matrix A 
  A  = new bool[n+1,n+1]; 
  // Initialization: Set A = C 
  for(int i=1; i <= n; i++) 
    for(int j=1; j <= n; j++) 
       A[i,j] = C[i,j]; 
  
  // Compute in order, A1, A2, ... An 
  for(int k=1; k <= n; k++) 
    for(int i=1; i <= n; i++) 
      for(int j=1; j <= n; j++) 
        if (A[i,j] == false) A[i,j] = A[i,k] && A[k,j];   
} 
 

 
Listing  5.9 Warshall’s algorithm for transitive closure.  

 
 
Exercise  5.5 The derivation of Floyd’s algorithm indicates that the algorithm works correctly only if the graph 
does not contain negative-length cycles. How would Floyd’s algorithm be modified to discover such cycles? 



 

 

5.9.2 Bellman-Ford Shortest-Paths Algorithm 
 
For the Bellman-Ford algorithm, the path size is the number of edges on the path; thus, let Dk[i,j] denote the 
length of the shortest path from i to j having at most k edges. Then we claim that D[i,j]=Dn-1[i,j].  The latter 
claim is justified as follows. In a graph with n vertices, the shortest path from some vertex to any other vertex 
has at most n−1 edges; otherwise, the path will have a cycle and a shorter path can be obtained by removing the 
cycle, assuming that any cycle, if present, has positive weight — the weight (length) of a cycle is the sum of 
weight of its constituent edges. Because of this assumption, Bellman-Ford algorithm works if some edges have 
negative weights, as long as there are no cycles with negative weight.     
 
The Bellman-Ford algorithm is given by the following recurrence equations: 
 

D1[i,j] = C[i,j]    // C[i,j] is the cost (weight) of the edge (i, j)    5.13
Dk[i,j] = minimum  { Dk-1[i, j], minimum over all edges (i,m) Dk-1[i,m]+C[m, j] }        5.14

 
Based on the preceding recurrence equations, we are to compute n−1 matrices, D1, D2, …, Dn-1.  For each of the 
last n−2 matrices, n2 entries have to be computed and the computation of any entry may require examining Θ(n) 
edges. Thus, the algorithm is Θ(n4).   
 
The computation of the matrix Di can be carried out using matrix multiplication as: Di = Di-1×C, except that we 
modify the matrix multiplication of two matrices A (k×n) and B (n×m) as R = A×B, as follows:  
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If we generate all the matrices D2, D3, …, Dn-1 using the preceding approach, the resulting algorithm is clearly  
Θ(n4). However, a shortest path of length at most k edges can also be viewed as the concatenation of two 
shortest paths, each of length at most k/2 edges. This implies that Dk can be computed as Dk/2×Dk/2. Thus, by 
generating certain powers of the adjacency matrix by repeated squaring, the running time is reduced to  
Θ(n3 log n).  
 
Bellman-Ford Algorithm for the Single-Source Shortest-Paths Problem 
 
The previous formulation of Bellman-Ford algorithm can be easily specialized to solve the single-source 
shortest-paths problem. That is, given a weighted directed graph and a source vertex sv, we are to find the 
shortest paths from sv to every other vertex. In this case the D matrix can be reduced to a one-dimensional 
vector D[1..n], where Dk[i] is the length of the shortest path from sv to i using at most k edges. 
 

D1[i] = C[sv,i]  // C[sv,i] is the cost (weight) of the edge from sv to i          5.15
Dk[i] = minimum {Dk-1[i], minimum over all edges (i,m) Dk-1[m]+C[m, i] }        5.16

 
In actual implementation of the Bellman-Ford algorithm, it suffices to maintain a single copy of D. Then when it 
comes to computing Equation  5.16, we have two options: (a) an outer i-loop where i ranges over all the vertices 
and an inner loop that examines every outgoing edge from i, or (b) a single loop that goes over all the edges. The 
latter option is more efficient, especially for sparse graphs (where |E|≈|V|); the algorithm’s program-code is 
given in Listing  5.10, and a worked-out example is given by Figure  5.14. The algorithm’s running-time 
complexity is O(|V|×|E|) — for dense graphs this is O(|V|3), and it should use the edge-list (or adjacency-lists) 
representation.   


