You must know the following facts about GFs (you won't get any points for stating them):

- $\mathbf{1} /(\mathbf{1}-\boldsymbol{x})$ is the GF for the $G P$ infinite sequence $1,1,1, \ldots \Leftrightarrow \mathbf{1}+x+x^{2}+\ldots$
- $\mathbf{1}(\mathbf{1}-x)^{2}$ is the GF for the infinite sequence $1,2,3, \ldots \Leftrightarrow 1+2 x+3 x^{2}+\ldots$
- The Binomial Theorem, the exponent \boldsymbol{n} is a positive integer

$$
(x+y)^{n}=\sum_{k=0}^{n}\binom{n}{k} x^{k} y^{n-k}
$$

- The Extended Binomial Theorem, the exponent \boldsymbol{u} is a real number

$$
(1+x)^{u}=\sum_{k=0}^{\infty}\binom{u}{k} x^{k}
$$

1. In the questions below write (include proper reasoning) a simple formula for the generating function associated with the given sequence.
a) $0,1,1,1,0,1,1,1,0, \ldots$.

The sequence $S=1,0,0,0,1,0,0,0,1, \ldots$ corresponds to $1 /\left(1-x^{4}\right)$ [by replacing x by x^{4} in GP] The sequence in question can be obtained as the sequence $1,1,1, \ldots$ minus S
Thus, the sequence in question has its GF as $1 /(1-x)-1 /\left(1-x^{4}\right)$
b) $0,1,2,3, \ldots$

The sequence $S=1,2,3, \ldots$ corresponds to $1 /(1-x)^{2}$
The given sequence is the sequence is S minus the sequence $1,1,1, \ldots$
Thus, the GF for the given sequence is $1 /(1-x)^{2}-1 /(1-x)=[1-(1-x)] /(1-x)^{2}=x /(1-x)^{2}$

Another simpler solution:
The GF for the given sequence is $0+1 x+2 x^{2}+3 x^{3}+\ldots .=0+x\left(1+2 x+3 x^{2}+\ldots.\right)=x /(1-x)^{2}$
2. Compute a non-recursive formula (in terms of \boldsymbol{k}) for $\boldsymbol{a}_{\mathbf{k}}$ (the coefficient of $\boldsymbol{x}^{\mathbf{k}}$) in the sequence determined by $1 /(1+2 x)^{5}$. Also give the values of the first three terms of the sequence.

Note: $1 /(1+2 x)^{5}=(1+2 x)^{-5}$. Thus, because of negative exponent, we use the Ext. Bin. Theorem.
By the Ext. Bin. Theorem, the k-th term in the expansion of $1 /(1+2 x)^{5}$ is $C(-5, k)(2 x)^{k}$
By definition, a_{k} is the coefficient of x^{k}; thus, $a_{k}=C(-5, k) 2^{\mathrm{k}}$
Next, we compute the first three terms using the preceding formula.
$a_{0}=C(-5,0) 2^{0}=1$
$a_{1}=C(-5,1) 2^{1}=-5 * 2=-10$
$a_{2}=C(-5,2) 2^{2}=\left[\left(-5^{*}-6\right) / 2\right] * 4=60$ [Note: it is a mistake to compute $C(-5,2)$ as $\left.\left(-5^{*}-4\right) / 2\right]$

