CLASSIFICATION OF GRAPH EDGES
Introduction

· Let G be a directed or undirected graph.

· Let d[u] be the discovery time and f[u] be the finishing time of a vertex u of G
· Let Ti be a DFS (Depth First Search) tree. A DFS tree is a spanning tree of the vertices reached and the edges traversed during the search.
· Definition: A free tree is a tree in which the edges are not directed and that has no root node.
· For an undirected graph the DFS of each connected component is a free tree.

The following algorithm builds DFS tree(s) of a graph G and calculates the discovery and finishing times of each vertex:

dfsGeneral(G){

 td = 0; tf = 0; // Let td and tf be global variables
 mark each vertex of G as NOT VISITED;
 for(i = 0; i < numnerOfVertices; i++){

if(vertexi is not visited){

 Add vertexi to tree Ti;

 dfsPreOrder(vertexi, G, Ti);

}

 }

}

dfsPreOrder(v, G, T){

visit(v);

mark v as VISITED;

d[v] = td++;

for(each neighbour u of v){

 if(u is NOT VISITED){

add edge (v, u) to tree T;

dfsPreOrder(u, G, T);

 }

 f[v] = tf++;

}

}

Properties

• if u is an ancestor of v in the DFS tree, then d[u] < d[v] and f[u] > f[v]

• if u is a descendant of v in the DFS tree, then d[u] > d[v] and f[u] < f[v]

Edge Classification

Note that the way we classify the edges depends on what node we start from and in what order the algorithm happens to select successors to visit.

We can classify edges on a Graph according to the order of their discovery during DFS search.

• Tree-Edge is an edge in a DFS tree.

• (u, v) is a tree edge iff d[u] = d[v] − 1 (or d[v] = d[u] − 1 in the undirected case)

 • for a directed graph if (u, v) is a tree edge, then f[u] > f[v]

• Back-Edge is a non-tree edge from a vertex u to an ancestor of u in a DFS tree.

• if (u, v) is a back edge then d[u] > d[v]

• for a directed graph if (u, v) is a back edge, then f[u] < f[v]

 Note: Self loops in directed graphs are considered to be back edges.

• Forward-Edge* is a non-tree edge from a vertex u to a descendent of u in a DFS tree.

• (u, v) is a forward edge iff d[u] < d[v] − 1

• Cross-Edge* is a non-tree edge that connects vertices in two different DFS-trees or two vertices in the same DFS-tree neither of which is the ancestor nor the descendant of the other.

• (u, v) is a cross edge iff d[u] > d[v] and [u, v] is not a back edge

• if (u, v) is a cross edge, then f[u] > f[v]
* Only apply to directed graphs; this implies in a DFS tree of an undirected graph G, every edge of G is either a tree edge or a back edge.
Example1:

[image: image1.png]\Tree edge
\ Back edge
\ Forward ed:
\ Cross edge

Example2:
Classify the edges in the following disconnected undirected graph. Use vertex A as the starting vertex. If at any point in the DFS search it is possible to visit more than one vertex, visit the vertices in increasing alphabetical order.
 [image: image2.jpg]

Solution:

[image: image3.jpg](w—0

. AE, and J-L are back edges
Q The remaining edges are tree edges

Example3:

Classify the edges in the following directed graph. Use vertex A as the starting vertex. If at any point in the DFS search it is possible to visit more than one vertex, visit the vertices in increasing alphabetical order.

[image: image4.jpg]0N

Solution:

[image: image5.jpg]Tree edges:

Forward edges:
A-—>D
A-

