
DYNAMIC PROGRAMMING ALGORITHM FOR
TRAINING FUNCTIONAL NETWORKS

Emad A. El-Sebakhy
Information and Computer Science Department

CCSE, KFUPM
Dhahran, Saudi Arabia, 31261
Email:sebakhy@kfupm.edu.sa

Salahadin A. Mohammed
ICS Department
CCSE, KFUPM

Dhahran, Saudi Arabia, 31261
Email:adam@kfupm.edu.sa

Moustafa A. Elshafei
Systems Engineering Department

CCSE, KFUPM
Dhahran, Saudi Arabia, 31261

Email:elshafei@ccse.kfupm.edu.sa

Abstract— The paper proposes a dynamic programming al-
gorithm for training of functional networks. The algorithm
considers each node as a state. The problem is formulated as
finding the sequence of states which minimizes the sum of the
squared errors approximation. Each node is optimized with
regard to its corresponding neural functions and its estimated
neuron functions. The dynamic programming algorithm tries to
find the best path from the final layer nodes to the input layer
which minimizes an optimization criterion. Finally, in the pruning
stage, the unused nodes are deleted. The output layer can be taken
as a summation node using some linearly independent families,
such as, polynomial, exponential, Fourier,...etc. The algorithm is
demonstrated by two examples and compared with other common
algorithms in both computer science and statistics communities.

Keywords: Functional Networks; Dynamic Programming;
Minimum Description Length; Interpolation.

I. INTRODUCTION

One of the strengths of the standard artificial neural net-
work (ANN) is their capability to learn complex nonlinear
relationships by training, which otherwise can hardly be
modeled statistically or from first principles [1, 12]. Neural
networks have been trained to perform complex functions
in various fields of application including pattern recognition,
identification, classification, prediction, speech recognition,
computer vision, and control systems. ANNs are composed of
signal processing elements called neurons. Each node consists
basically of a summation node and an activation function.
The neurons are interconnected and the strength of their
interconnections is denoted by the parameters called synaptic
weights. As it is shown in Figure1, the architecture of the
Feed-Forward Neural Network (FFNN) is composed of layers
of interconnected neurons. Usually, for sufficient number of
hidden units, FFNNs can approximate any continuous static
input-output mapping to any desired degree of approxima-
tion [2, 3]. The learning process involves updating network
architecture and connection weights, so that a network can
do both prediction and classification task using some efficient
learning algorithms. The back propagation (BP) algorithm is
usually used for FFNN training [2-5]. Several improvements of
the BP algorithms were proposed in the literature, e.g. Delta-
Bar-Delta algorithm [5, 8], Quick-propagation [6], and more
recently the resilient back-propagation [7]. Several types of

ANNs have also been proposed, such as radial basis function
networks (RBFNs), and probabilistic neural networks (PNNs)
[12]. Polynomial learning neural networks have been proposed
for function approximation [11]. The concept stems from the
fact that any continuous function can be approximated to an
arbitrary precision in an average squared residual sense by
multivariate Kolmogorov-Gabor polynomials. The advantage
of polynomial learning networks is that they make possible
the evaluation of complex, high-order models in acceptable
time by composing simple transfer polynomials with weights
that are computed efficiently by ordinary least-squares (OLS)
fitting. Unlike Neural Networks, they can be trained with
substantially smaller set of training data.

Recently, [9] proposed a method for constructing the poly-
nomial in the form of a network of simpler two variable
transfer polynomials. The selection of the transfer polynomials
and construction of the network is performed using inductive
genetic programming. Polynomial learning networks are also
known as Abductive Networks. Abductive reasoning is defined
as reasoning from general principles and initial facts to new
facts under uncertainty [10, 12]. In an abductive network, com-
plex systems are decomposed into smaller, simpler subsystems
and grouped into several layers by using polynomial functional
nodes. In the meantime, inputs are also subdivided into groups,
then transmitted into individual functional nodes. These nodes
evaluate the limited number of inputs by a polynomial function
and generate an output to serve as an input to subsequent nodes
of the next layer.

Fig. 1. Multi-layer feed forward neural network (FFNN).

Recently, functional networks Recently, functional networks
have been introduced by [13], [14] as a generalization of the

standard neural networks that combine both knowledge about
the structure of the problem, to determine the architecture of
the network, and data, to estimate the unknown functional
neurons, see [15] for more details. The contribution of this
paper is to propose a dynamic programming (DP) algorithm
for training of functional networks, by considering each node
as a state. Therefore, the problem is formulated as finding the
sequence of states which minimizes the sum of the squared
errors approximation. In addition, each node is optimized with
regard to its corresponding neural functions and its estimated
neuron functions. Furthermore, we find the best path from
the final layer nodes to the input layer which minimizes an
optimization criterion. The output layer can be taken as a
summation node using some linearly independent families.

The rest of the paper is organized as follows: Section II
provides a brief description of the state-of-the art of func-
tional networks. Section III describes the polynomial learning
scheme in details. The dynamic programming algorithm is pro-
posed in Section IV. Distinct examples with implementation
results are proposed in Section V. The conclusion and future
work are presented in Section VI.

II. FUNCTIONAL NETWORKS: AN OVERVIEW

Functional networks are a generalization of neural networks
that combine both knowledge about the structure of the
problem, to determine the architecture of the network, and
data, to estimate the unknown functional neurons [13], [14]
and [15]. Functional networks as a new modeling scheme
has been used in solving both prediction and classification
problems. It is a general framework useful for solving a wide
range of problems in probability, statistics, signal processing,
pattern recognition, functions approximations, real-time flood
forecasting, science, bioinformatics, medicine, structure en-
gineering, and other business and engineering applications,
see [15], and the references therein for more details. The
performance of functional networks has shown bright out-
puts for future applications in both industry and academic
research of science and engineering based on its reliable
and efficient results. Several comparative studies have been
carried to compare its performance with the performance of the
most popular prediction/classification modeling data mining,
machine learning schemes in literature [15]. The results show
that functional networks performance outperforms most of
these popular modeling schemes in machine learning, data
mining, and statistics communities. Dealing with functional
networks required some concepts and definitions, which can
be briefly discussed as follows:

We call the node Xj ∈ X, for all j as a multiple node, if
it is an output of more than one neural functions. Otherwise,
it is called a simple node.

As it is shown in Figure 2, a functional network consists of:
a) several layers of storing units, one layer for containing the
input data (xi; i = 1, . . . , 4), another for containing the output
data (x7) and none, one or several layers to store intermediate
information (x5 and x6); b) one or several layers of processing
units that evaluate a set of input values and delivers a set of

Fig. 2. (a) A Neural Network, (b) A Functional Network.

output values (fi) and c) a set of directed links. Functional
networks extend neural networks by allowing neural func-
tions fi to be not only true multi-argument and multivariate
functions, but to be different and learnable, instead of fixed
functions. In functional networks, the activation functions are
unknown functions from a given family, i.e. polynomial, to be
estimated during the learning process. In addition, functional
networks allow connecting neuron outputs, forcing them to be
coincident. Some differences between a neural network and a
functional network are shown in Figure 2. Functional networks
methodology can be more easily understood by organizing it
into seven steps as it is shown in [15].

III. POLYNOMIAL LEARNING NETWORKS

We can write the output units in several distinct forms (one
per different link) and get a system of functional equations that
can be written directly from the architecture of the functional
network. By solving this system of functional equations, we
obtain an equivalent but simpler functional network [13, 14,
15]. We can learn the neuron functions by structural learning
and/or parametric learning. In this paper we introduce a
dynamic programming algorithm for selection of the transfer
polynomials and optimization of the network parameters. To
demonstrate the algorithm we consider the class of bivariate
polynomial functions as shown in Table 1. We are interested
in constructing a neural network where in the nodes can
take a function from a predefined set of functions. Further
more, the selection of the optimal function and the parame-
ters of the functions are determined during the training the
network. Clearly, the predefine set, F ; can be expanded to
include single node functions with a single input variable,
and higher multivariate forms. The proposed structure of the
Polynomial network as it is shown in Figure1 consists of one
or more layers of transfer polynomials and an output layer.

The output layer could be simply a summation node. We
want to investigate functional network structures consisting
of T layers in which we have at most l1, l2, . . . , lT nodes in
the corresponding layers, and a single node output layer. The
objective is to approximate an unknown function from a given
set of training data. Extension of the algorithm to more general
structures will be discussed as well.

Transfer Polynomials
f1(x) = w0 + w1 ∗ x1 + w2 ∗ x2

f2(x) = w0 + w1 ∗ x1 + w2 ∗ x1 ∗ x2

f3(x) = w0 + w1 ∗ x1 + w2 ∗ x1 ∗ x2 + w3 ∗ x2
1

f4(x) = w0 + w1 ∗ x1 + w2 ∗ x2
2

f5(x) = w0 + w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x1 ∗ x2 + w4 ∗
x2

1 + w5 ∗ x2
2

f6(x) = w0 + w1 ∗ x2
1 + w2 ∗ x2

2

f7(x) = w0 + w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x2
1 + w4 ∗ x2

2

f8(x) = w0 +w1 ∗x1 +w2 ∗x1 ∗x2 +w3 ∗x2
1 +w4 ∗x2

2

f9(x) = w0 + w1 ∗ x1 ∗ x2

f10(x) = w0 + w1 ∗ x2 + w2 ∗ x2
1

IV. DYNAMIC PROGRAMMING ALGORITHM

The dynamic programming algorithm considers each node
as a state. The problem is formulated as finding the sequence
of states which minimizes the sum of the squared of the
approximation error. The dynamic programming algorithm
tries to find the best path from the final layer nodes to the
input layer which minimizes an optimization criterion. The
minimization criterion is considered here the least squared
error. At each layer, t, and for each node j, the algorithm
search for the inputs from the previous layers which provide
the best approximation of the output in the mean squared
error sense. The parameters (weights) of the output layer
are also obtained by OLS method. We assume we have N
inputs x1, x2, . . . , xN , and a scalar output y. The training data
consists of M input vectors, and the size of the set of transfer
polynomials is K.

We observed that to give a complete picture to the reader,
we must define numerous notations, such as, xi(m) is the mth

sample of the ith input variable. In addition, vt,i(m) is the mth
sample of output of ith node in the tth layer. Furthermore,
layer E(t, i) is LSE of the ith node in the tth layer and D is
an N × M matrix of the training data, and Y is an M × 1
vector of the desired output. The details of the entire training
algorithm steps are expressed as follows:

1) At the input layer, for each pair of input variables we
select the best transfer polynomial which fits the given
data in the least squared error sense.

J(i, j) =
min
k, w

{
M∑

m=1

(y(m)− fk(w, xi(m), xj(m)))2}
(1)

for i, j = 1, 2, . . . , N . The polynomial is defined by its
index k, and its coefficient vector W. For each k, we

apply the OLS technique to find the parameter vector
W, and compute the residual mean squared error. The
best polynomial is the one which achieves the least
residual sum of squared error. Clearly, the number the
generated nodes is N2

2) Next, we sort the nodes in ascending order and select the
best l1 nodes, where l1 is the desired number of nodes
in the input layer.

3) Compute the outputs {v1
j (m)},forj = 1, 2,l1.

4) The nodes of the subsequent layers are computed by
repeating the same steps, however by replacing the input
x by v, i.e.

J(i, j) =
min
k, w

{
M∑

m=1

(y(m)− fk(w, vi(m), vj(m)))2}
(2)

The residual minimum error is then sorted and the best
li node is retained. The output from the retained nodes
are computed and used in the subsequent layers.

5) Pruning: starting from the T layer, that is the final layer
excluding the output layer, we trace back the nodes,
identifying the signal path from each node in the final
layer to the input variables. We only keep the nodes
along these paths, while the unused nodes are deleted.
The network in this case will have at most l1 nodes in
the firs layer, at most l2 nodes in the second layer, and
so on.

6) Finally the weights of the output node is computed by
minimizing the squared error

E =
min
w

{
M∑

m=1

(y(m)−
Lf∑

l=1

wf,lv
f
l (m))2}, (3)

using the ordinary least squares (OLS) techniques. The
use of summation node rather than a function avoids
over fitting the data. The algorithm can easily be ex-
tended to allow for inclusion of inputs from any of
the previous layers by including an identity function,
and other single node functions in the predefined set of
functions.

V. EXAMPLES
Example 1: Pollutant in the Exhaust Gas of a Boiler

The concentration of a pollutant in the exhaust gas of a
boiler is measured under various operating conditions. The
operating conditions are determined by 6 variables: Air fuel
ratio, Fuel mass flow rate, Air flow rate, Flame maximum
temperature, Average combustion chamber temperature, and
the outlet gas temperature.

The training data consists of 10 sets of readings only. While
the test data consists of two sets of readings. A polynomial
learning network was constructed using 12 nodes in the first
layer and 4 nodes in the second layer. The trained network
achieved the following network (net) values for the training
data. The predicted values and the actual values for the testing
data are summarized. The predicted versus the actual values
for the test data

Network 53.39 58.37
Actual concentration (ppm) 53.5 58.1

The structure of the nodes of the first layer is summarized
in the following table:

Node First input Second input Trans. poly.
1 4 1 7
2 4 2 5
3 1 2 5
4 3 2 5
5 6 3 5
6 5 4 5
7 3 1 5
8 6 4 5
9 5 1 5
10 5 3 5
11 2 5 5
12 6 2 5

The second layer consists of four nodes, that is, as follows

Node First input Second input Trans. poly.
1 7 11 5
2 3 11 5
3 2 10 5
4 6 1 5

The second layer doe not utilize all the nodes of the first
layer, and hence these unused nodes of the first layer, namely
(4, 5, 8, 9, 12) are deleted from the first layer.

Example 2: Non Polynomial Function
Suppose that we generate data of size 200 from the model

log (y) = x1 +x2+ε, where x1 ∼ U [0, 1], x2 ∼ U [0, 1], and
ε ∼ N [0, 0.01] or ε ∼ N [0, 0.1] . The scatter plot of y against
x1 + x2 is shown in Figure3 with sample of 50 observations
for both models. To determine the estimated model using
functional networks using the proposed training algorithm with
separable functional network model, we choose the polynomial
families of linearly independent functions φ1 =

{
1, y, y2

}
,

φ2 =
{
1, x1, x

2
1, x

3
1

}
, φ3 =

{
1, x2, x

2
2, x

3
2, x

4
2

}
, and tolerance

values equal to 0.1 or 1, see [14, 15] for more details. Thus,
by applying the dynamical programming algorithm on the
initial architecture of the corresponding functional network
[14], we obtain the estimated functional network model with
ε ∼ N [0, 0.01] with backward selection criterion is given by:

−0.9498 + 1.193 y − 0.2071 y2 + 0.0141y3

= 0.138 x1 − 0.1532 x3
1 + x2.

(4)

with the value 6.72 × 10−6 for the estimated mean squared
errors (MSE).

Fig. 3. Scatter plots of the genearated data using given models with both
ε ∼ N [0, 0.1] and ε ∼ N [0, 0.01].

When data are simulated without error (no uncertainty asso-
ciated with the data sample), the true functional network model
is selected at the end of backward procedure if tolerance =1.
The given logarithmic model is approximated by functional
networks with polynomial function, that is,

−0.8280 + 1.1930 y − 0.2071 y2 + 0.0141 y3 = x1 + x2.

Figure 4 shows the scatter plots of both natural logarithm
(ln(y)) and the predicted model: −0.8280 + 1.1930 y −
0.2071 y2+0.0141 y3 against x1+x2. We note that both graphs
are identical.

Fig. 4. Plots of the actual and predicted models versus x1 + x2.

We observed that the estimated form of the functional
networks is simpler than its given model. In addition, the
output estimated value layer doe not utilize all the input nodes.
This is reasonable because more different terms are considered
in these models, then tolerance value influence very much in
the results.

VI. CONCLUSION

The paper provided a dynamic programming algorithm to
train polynomial learning networks. The algorithm can be
applied to any functional networks architectures and produce
both reliable and efficient performance . The algorithm is
suitable for limited training data, and discovers automatically
the best structure for the network. For future work we sug-
gest more simulation study and real-world applications to
be investigated and carry comparative studies with the most
popular schemes in both data mining and machine learning
communities.

ACKNOWLEDGMENT

The authors wish to acknowledge the support and facilities
provided by King Fahd University of Petroleum and Minerals,
Dhahran, Saudi Arabia in the development of this paper.

REFERENCES

[1] Rumelhart D.E., Hinton G.E., and Williams R.J.,Learning internal rep-
resentation by back Propagation. In Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, V. I, Cambridge, MA:,
(1986).

[2] Simon H., Neural Networks: a Comprehensive Foundation, Macmillan
Publishing Englewood Cliffs, NJ, (1994).

[3] Stinchcombe M. and White H., Multilayer feed-forward network are
universal approximators. Neural Networks, v.2, p 359–366, (1989).

[4] Hopfield J. J., Neural networks and physical systems with emergent
collective computational abilities. Proc. Of the National Academy of
Sciences of the U.S.A., Vol. 79, pp. 2554–2558, (1982).

[5] Jacob R., Increased Rates of Convergence Through Learning Rate Adap-
tation. Neural Networks, Vol. 1, pp. 295–307, (1988).

[6] Fahlman S.E., An Empirical Study of Learning Speed in Back propagation
Networks. Technical report, CMU-CS-88–162, Carngie-Mellon Univer-
sity, (1988).

[7] Riedmiller R. and Braun H., A Direct Adaptive Method for Faster
Back Propagation Learning: The Prop Algorithm. Proc. of the IEEE
International Conference on Neural Networks, pp. 586–591, (1993).

[8] Fernandez B., Parlos A. G., and Tsai W. K., Nonlinear Dynamic System
Identification Using Artificial Neural Networks. Proc. of International
Joint Conference On Neural Networks, Vol. 2, pp. 131–141, (1990).

[9] Nikolaev N. and Iba H. Learning Polynomial Feedforward Neural Net-
works by Inductive Genetic Programming and Backpropagation, IEEE
Transactions on Neural Networks, vol.14, N:2, pp.337–350, (2003).

[10] Lee Y. B., Liu H. S., and Tarng Y. S. An Abductive Network for Pre-
dicting Tool Life in Drilling. IEEE Transactions on industry applications,
vol. 35, No. 1, (1999).

[11] Hema R., Madala A. Grigoévich I., Inductive learning algorithms for
complex systems modeling. CRC Press, c© (1994).

[12] Duda R. O., Hart P. E., and Stock D. G., Pattern Classification, Second
Edition, John Wiley & sons, NY, (2000).

[13] Castillo E. and Ruiz-Cobo R., Functional Equations and Modelling in
Science and Engineering, Marcel Dekkerm NY, (1992).

[14] Castillo E., Cobo A., Gutiérrez J. M. and Pruneda E., Introduction
to Functional Networks with Applications, A Neural Based Paradigm,
Kluwer Academic Publishers: New York, (1998)

[15] El-Sebakhy A. E., Hadi S. A., and Faisal A. K., Iterative Least Squares
Functional Networks Classifier; IEEE Transactions Neural Networks, vol.
18, no. 2, March (2007).

