Chapter 3
Seismic Velocity

Introduction

- The objective of this chapter is to learn about the porosity-velocity relationship and types of seismic velocities and how to compute them.
- Seismic velocity of subsurface rocks is the most important parameter in seismic exploration.
- Seismic velocity is used in various stages of seismic data processing and interpretation such as:
 - NMO correction and stacking
 - Interval-velocity estimation
 - Time-to-depth conversion
 - Migration
 - General interpretation purposes

Model of a sedimentary rock

- The simplest model of a sedimentary rock consists of spheres (grains) arranged (packed) in a specific pattern. The packing pattern controls the amount of pore space.
- Porosity is the most controlling factor on seismic velocity.
- Porosity (ϕ) is defined as the ratio between the pore volume (V_p) and the total rock volume (V_b):

$$\phi = \frac{V_p}{V_b}.$$ \hspace{1cm} (1)
Porosity-density relation: Porosity is related to the rock (overall), matrix (solid), and pore-fluid densities (ρ_r, ρ_m, and ρ_f) by the following volume-weighted average equation:

$$\rho_r = \phi \rho_f + (1 - \phi) \rho_m.$$ \hspace{1cm} (2)

Porosity-velocity relation: Porosity is related to the rock, matrix, and pore-fluid P-wave velocities (α_r, α_m, and α_f) by the following time-average (Wyllie’s) equation:

$$\frac{1}{\alpha_r} = \frac{\phi}{\alpha_f} + \frac{(1 - \phi)}{\alpha_m}.$$ \hspace{1cm} (3)

Figure.

Density-velocity relation: Gardner’s rule is an empirical equation that relates the density and P-wave velocity in sedimentary rocks as follows:

$$\rho_r = 0.31 \alpha_r^{1/4},$$ \hspace{1cm} (4)

where ρ_r is the rock (overall) density (gm/cm^3) and α_r is the rock (overall) P-wave velocity (m/s).

This figure shows plots of α_r and ρ_r as functions of ϕ.

The following statements are generally true about the overall P-wave velocity in sedimentary rocks:

- Velocity decreases with porosity.
- Velocity increases from sandstone to limestone to dolomite.
- In the same rock, P-wave velocity is smaller, when gas fills the pores, than when oil or water fills them.
- Velocity increases with age, depth, pressure, or cementation.
• The following is a table of matrix densities and velocities of some rocks:

<table>
<thead>
<tr>
<th>Rock</th>
<th>α_m (km/s)</th>
<th>ρ_m (gm/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shale</td>
<td>3.4</td>
<td>2.52</td>
</tr>
<tr>
<td>Sandstone</td>
<td>5.5</td>
<td>2.65</td>
</tr>
<tr>
<td>Limestone</td>
<td>6.4</td>
<td>2.71</td>
</tr>
<tr>
<td>Dolomite</td>
<td>7.0</td>
<td>2.87</td>
</tr>
<tr>
<td>Anhydrite</td>
<td>6.1</td>
<td>2.96</td>
</tr>
<tr>
<td>Salt</td>
<td>4.6</td>
<td>2.16</td>
</tr>
</tbody>
</table>

• The following is a table of densities and velocities of some fluids:

<table>
<thead>
<tr>
<th>Fluid</th>
<th>α_f (km/s)</th>
<th>ρ_f (gm/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>1.5</td>
<td>1.00</td>
</tr>
<tr>
<td>Oil</td>
<td>1.3</td>
<td>0.80</td>
</tr>
<tr>
<td>Gas (at 1 atm, 25 ºC)*</td>
<td>0.33</td>
<td>0.0008</td>
</tr>
</tbody>
</table>

* Density and P-wave velocity in gas increase with pressure and temperature.

Seismic velocity types

• We will study the following seismic velocity types:
 - Interval
 - Average
 - NMO
 - RMS
 - Stacking
- Dix

- **The interval velocity** (V_i) is the velocity in a single layer, which can be determined from sonic logs or laboratory measurements on cores from the layer.

- **The average velocity** (V_N) to the N^{th} layer is defined in terms of the layers properties as:

 \[V_N = \frac{\sum_{i=1}^{N} V_i \Delta T_{0i}}{\sum_{i=1}^{N} \Delta T_{0i}} \]

 where N: the total number of layers, V_i: the interval velocity in the i-th layer, and $\Delta T_{0i} = T_{0i} - T_{0i-1}$; where T_{0i-1} and T_{0i} are the zero-offset traveltimes to the top and bottom of the i-th layer, respectively ($T_{00} = 0$).

 - The average velocity is the velocity that we get by dividing the depth (Z_N) over the zero-offset one-way traveltime ($T_{0N}/2$) to the bottom of the N^{th} layer:

 \[V_N = \frac{2Z_N}{T_{0N}} \]

- **The NMO velocity** (V_{NMO}) to the bottom of the N^{th} layer is the velocity found using the approximate NMO correction formula (equation (5) of Chapter 2).

 - V_{NMO} is found practically by searching for the velocity that will align the true T-X curve horizontally using the approximate NMO correction formula.

 - This is usually done through the constant velocity stack (CVS) method during the velocity analysis phase of the seismic data processing flow (Figure).

 - It can be found directly from $\Delta T_{NMO}(X)$ as

 \[V_{NMO} \approx \frac{X}{\sqrt{2 * T_{0N} \Delta T_{NMO}(X)}} \]
• The root-mean-square velocity (V_{RMS}) to the bottom of the N^{th} layer is defined, in terms of layers properties, as:

$$V_{RMS} = \sqrt{\frac{\sum_{i=1}^{N} V_i^2 \Delta T_{oi}}{\sum_{i=1}^{N} \Delta T_{oi}}}$$

➢ It is defined, in terms of the true T-X curve, as the reciprocal of the square root of the X^2 coefficient we get by fitting a polynomial to the true $T^2 - X^2$ curve. That is, fitting a polynomial of the form: $T_N^2 = C_{0N} + C_{1N}X^2 + C_{2N}X^4 + \ldots$ to the true $T^2 - X^2$ curve,

$$V_{RMS} = \frac{1}{\sqrt{C_{1N}}}.$$

➢ Note that V_{RMS} is also the reciprocal of the square root of the slope of the tangent to the true $T^2 - X^2$ curve at $X = 0$:

$$V_{RMS} = \frac{1}{\sqrt{\left[\frac{dT_N^2}{dX^2}\right]_{X=0}}}.$$

• The stacking velocity (V_S) to the bottom of the N^{th} layer is defined as the velocity found by fitting a hyperbola to the true T-X curve of the form:

$$T_N^2(X) = T_{0N}^2 + \frac{X^2}{V_{S}^2}$$

➢ Note that the stacking velocity is a special case of the RMS velocity (i.e., when only the first 2 terms are used in the polynomial fit).
By fitting a hyperbola to the true *nonhyperbolic* T-X curve, we are lumping all the layers above the N^{th} reflector into a single virtual layer and assigning this virtual layer a velocity of V_{SN}.

- V_S is determined practically by searching for the velocity that will produce the best-fit hyperbola to the true T-X curve.

- This is usually done through the velocity spectrum method during the velocity analysis phase of the seismic data processing flow (Figure).

- At small offsets ($X/Z_N < 1$), $V_{RMSN} \approx V_{SN} \approx V_{NMO}$.

- **Dix velocity** (V_N) of the N^{th} layer is the *interval velocity calculated* from the RMS velocities to the top and bottom of the N^{th} layer (V_{RMSN-1} and V_{RMSN}) using Dix’s following formula:

$$V_N = \sqrt{\frac{V_{RMSN}^2 T_{0N} - V_{RMSN-1}^2 T_{0N-1}}{\Delta T_{0N}}}$$

- Out of V_{RMSN}, V_{SN}, and V_{NMO}, only V_{RMSN} can be related directly to the interval velocities of subsurface layers through Dix velocity formula.

- However, if only small offsets are used, we can use V_{SN-1} and V_{SN} or V_{NMO-1} and V_{NMO} in place of V_{RMSN-1} and V_{RMSN} in Dix’s velocity formula (More details).
Methods of velocity determination

1. **Time-distance methods:** This includes:

 (1) X^2-T^2 method:

 - If we assume that the time-distance curve is a hyperbola, then by plotting T^2 versus X^2, we get a straight line whose slope is $1/V^2$, where V is the stacking velocity (V_S) to the reflector.

 - We can also fit higher-order polynomials to the true T-X curve to get the RMS velocity ([Figure](#)).

 - **Exercise:** Fit polynomials of increasing orders to the true T-X curves of the second and third layers in this sheet and estimate V_S or V_{RMS} and compare your results to the true model parameters.

 - This method is more suited for high-quality small (experimental or synthetic) datasets because it requires picking of time at many offsets, which is time consuming and inaccurate on real datasets.

 (2) **Best-fit methods:** These are the most commonly used methods for determining velocity in seismic exploration. They are carried out during the velocity analysis phase of the seismic data processing flow. They include:

 - *Velocity spectrum method:* by fitting the best-fit hyperbola to the true T-X curve and finding the corresponding stacking velocity to each reflector ([Figure](#)).

 - *Constant-velocity stack method:* by finding the NMO velocity that produces the best NMO-corrected and stacked section for each reflector ([Figure](#)).
2. **Borehole methods:** These include:

- **Check-shot survey (Shooting a well):** A shot at the wellhead is fired and receivers at specific depths in the well are activated. The time-depth data of the direct arrivals are used to determine the velocities to each depth (Figure).

- **Vertical Seismic Profiling (VSP) survey:** Several shots at known offsets near a well are shot while receivers at specific depths in the well are activated. The time-depth-offset data is used to determine velocities near the well (Figure).

- **Acoustic (Sonic) Logging:** Vertical transit time in the borehole wall is recorded continuously using closely-spaced receivers. The velocity is calculated from the transit time and receiver spacing (Figure).