

Figure 3.2

Questions

Given the following wavelets:

- (a) w(t) = (2, -1)
- (b) w(t) = (1, -1)
- (c) w(t) = (1, -2)
- (1) Find the inverse filters $f_3(t) = (f_0, f_1, f_3)$ of wavelets (a), (b), and (c).
- (2) Compute the actual output y(t) of wavelets (a), (b), and (c).
- (3) Compute the error E between the desired and actual outputs of wavelets (a), (b), and (c).
- (4) Which wavelet has the minimum error? Why?

Answers

(1) Inverse filters:

- (a) W(z) = 2-z; F(z) = 1/W(z) = 1/(2-z) = (1/2)[1/(1-(1/2)z] = (1/2)[1+(1/2)z+(1/4)z^2+...] = 1/2+(1/4)z+(1/8)z2+...; f_3(t) = (1/2, \frac{1}{4}, \frac{1}{8});
- (b) Prove that $f_3(t) = (1, 1, 1)$.
- (c) Prove that $f_3(t) = (1, 2, 4)$
- (2) Actual outputs:
 - (a) $y(t) = w(t)*f_3(t) = (1, 0, 0, -1/8).$
 - (b) Prove that y(t) = (1, 0, 0, -1).
 - (c) Prove that y(t) = (1, 0, 0, -8).

(3) Errors: $d(t) = \delta(t) = (1,0,0,0)$:

- (a) $E = (1-1)^2 + (0-0)^2 + (0-0)^2 + (0+1/8)^2 = 1/64 = 0.015625.$
- (b) Prove that E = 1.
- (c) Prove that E = 64.
- (4) Wavelet (a) has the minimum error because it is a minimum-phase wavelet while wavelet
 - (b) is mixed-phase and (c) is a maximum-phase wavelet.

Figure 3.3

Let the input be	x(t)=(x0,x1)	known		
And the desired output be	d(t)=(d0,d1,d2)	known		
And the filter be $f(t)=(f(t))$	0,f1) unknown			
Therefore, the actual output will be $y(t)=f(t)*x(t)=(x0.f0,x0.f1+x1.f0,x1.f1)$				
unknown				

The error between the desired and actual outputs is E given as:

$$E = (d0-y0)^{2} + (d1-y1)^{2} + (d2-y2)^{2} = (d0-x0.f0)^{2} + (d1-x0.f1-x1.f0)^{2} + (d2-x1.f1)^{2}$$

To minimize E w.r.t. f0, we do the following:

$$\partial E/\partial f0=0$$

 $\Rightarrow -2x0(d0-x0.f0)-2x1(d1-x0.f1-x1.f0)=0$
 $\Rightarrow (x0^2+x1^2)f0+x0.x1.f1=x0.d0+x1.d1$
 $\Rightarrow r0.f0+r1.f1=g0,$ (1)
where: $r(t)=x(t)\otimes x(t)$ and $g(t)=d(t)\otimes x(t)$

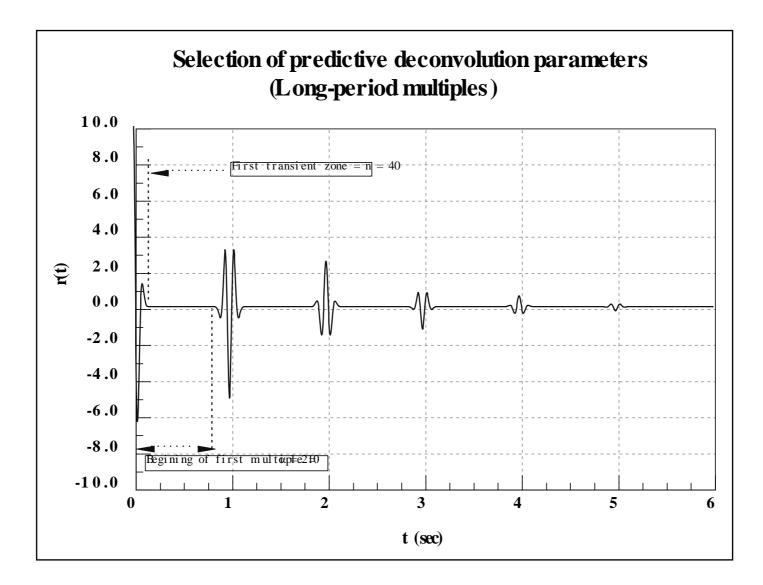
To minimize E w.r.t. f1, we follow a similar approach and get:

$$r1.f0+r0.f1=g1,$$
 (2)

Solving equations (1) and (2) simultaneously, we get the unknown filter coefficients f0 and

f1.

Equations (1) and (2) are called the normal equations.



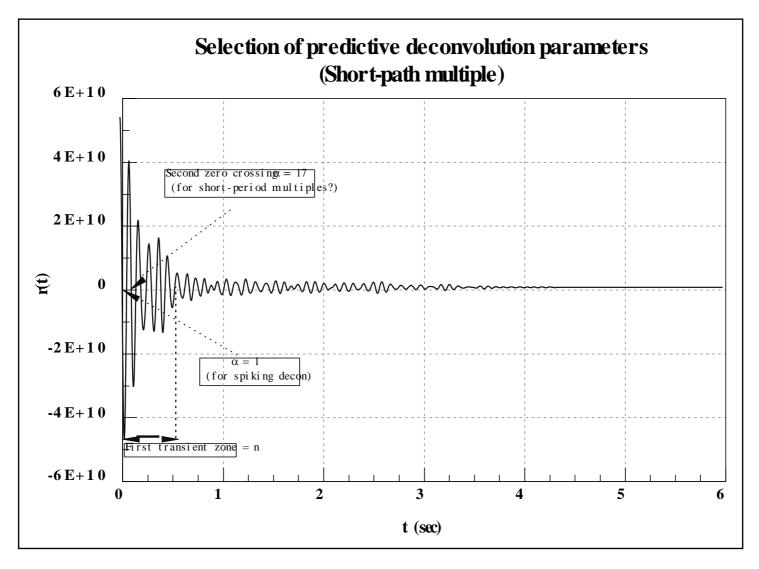


Figure	3.5

		Multiple suppression		
Parameter	Spiking deconvolution	Short-period (e.g., ghost)	Long-period (e.g., water-bottom)	
Autocorrelation Window (w)	> As long as possible.			
	> Should be in a section with the highest S/N ratio.			
	\succ Should be greater than eig	ht times the longest operator len	$gth = 8n_{max}.$	
Operator length (n)	➢ As long as possible.			
	Should include the first tra	insient zone.		
Prediction lag (α)	1	Second zero crossing	Beginning of first multiple	
Prewhitening (ε) (%)	0.1			

Figure 3.6

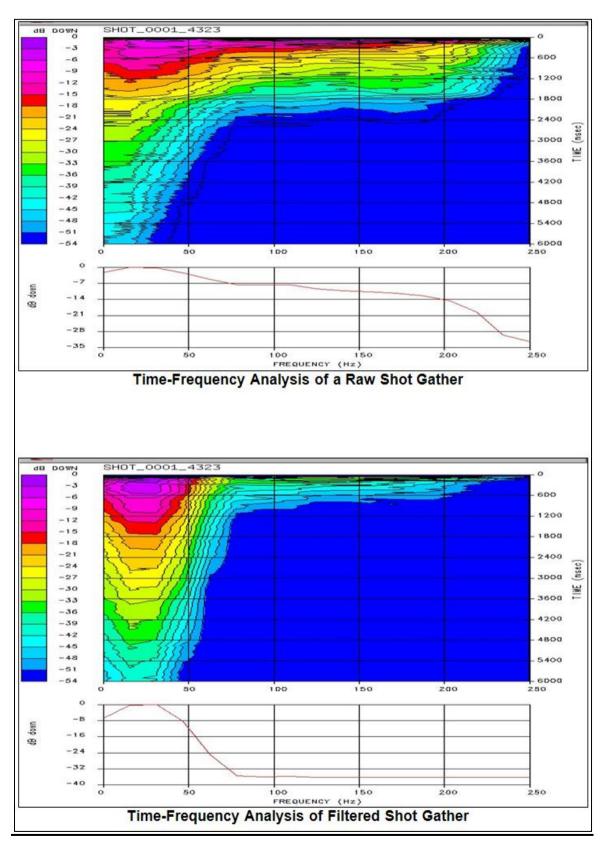


Figure 3.7

- G: Airgun (source), H: Hydrophone (receiver), sampling interval = Δt , and c = $T_0/\Delta t$.
- dT << T₀ is selected optimally such that the upgoing and downgoing waves add up in phase and a magnified downgoing wave is always recorded by the receivers.

