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Figure 3.2 

Questions 

Given the following wavelets: 

(a) w(t) = (2, -1) 

(b) w(t) = (1, -1) 

(c) w(t) = (1, -2) 

(1) Find the inverse filters f3(t) = (f0, f1, f3) of wavelets (a), (b), and (c). 

(2) Compute the actual output y(t) of wavelets (a), (b), and (c). 

(3) Compute the error E between the desired and actual outputs of wavelets (a), (b), and (c). 

(4) Which wavelet has the minimum error? Why? 

Answers 

(1) Inverse filters: 

(a) W(z) = 2–z; F(z) = 1/W(z) = 1/(2–z) = (1/2)[1/(1-(1/2)z] = 

(1/2)[1+(1/2)z+(1/4)z
2
+...] = 1/2+(1/4)z+(1/8)z2+...; f3(t) = (1/2, ¼, 1/8); 

(b) Prove that f3(t) = (1, 1, 1). 

(c) Prove that f3(t) = (1, 2, 4) 

(2) Actual outputs: 

(a) y(t) = w(t)*f3(t) = (1, 0, 0, -1/8). 

(b) Prove that y(t) = (1, 0, 0, -1). 

(c) Prove that y(t) = (1, 0, 0, -8). 

(3) Errors: d(t) = (t) = (1,0,0,0): 

(a) E = (1-1)
2
 + (0-0)

2
 + (0-0)

2
 + (0+1/8)

2
 = 1/64 = 0.015625. 

(b) Prove that E = 1. 

(c) Prove that E = 64. 

(4) Wavelet (a) has the minimum error because it is a minimum-phase wavelet while wavelet 

(b) is mixed-phase and (c) is a maximum-phase wavelet. 



Figure 3.3 

 

Let the input be  x(t)=(x0,x1)                 …      known 

And the desired output be d(t)=(d0,d1,d2)      …..      known 

And the filter be f(t)=(f0,f1)               ……..    unknown 

Therefore, the actual output will be y(t)=f(t)*x(t)=(x0.f0,x0.f1+x1.f0,x1.f1)      ….   

unknown 

The error between the desired and actual outputs is E given as: 

 E=(d0-y0)^2+(d1-y1)^2+(d2-y2)^2=(d0-x0.f0)^2+(d1-x0.f1-x1.f0)^2+(d2-x1.f1)^2 

To minimize E w.r.t. f0, we do the following: 

E/f0=0 

-2x0(d0-x0.f0)-2x1(d1-x0.f1-x1.f0)=0  

 (x0^2+x1^2)f0+x0.x1.f1=x0.d0+x1.d1 

 r0.f0+r1.f1=g0, (1) 

where: r(t)=x(t)x(t) and g(t)=d(t)x(t) 

To minimize E w.r.t. f1, we follow a similar approach and get: 

r1.f0+r0.f1=g1,  (2) 

Solving equations (1) and (2) simultaneously, we get the unknown filter coefficients f0 and 

f1. 

Equations (1) and (2) are called the normal equations. 

  



Figure 3.4A 
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Figure 3.4B 
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Figure 3.5 

 

Parameter 

 

Spiking deconvolution 

Multiple suppression 

Short-period (e.g., ghost) Long-period (e.g., water-bottom) 

Autocorrelation Window (w)  As long as possible. 

 

 Should be in a section with the highest S/N ratio. 

 Should be greater than eight times the longest operator length = 8nmax. 

Operator length (n)  As long as possible. 

 Should include the first transient zone. 

Prediction lag () 1 Second zero crossing Beginning of first multiple 

Prewhitening () (%) 0.1 

 

 

 



Figure 3.6 

 

  



Figure 3.7 

 G: Airgun (source), H: Hydrophone (receiver), sampling interval = t, and c = T0/t. 

 dT << T0 is selected optimally such that the upgoing and downgoing waves add up in 

phase and a magnified downgoing wave is always recorded by the receivers. 
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