Surfaces and Contact Mechanics
Part Two: Contact Mechanics 
The contact mechanics has traditionally begun with the applied mathematics approach with very little by way of practical application. Therefore, Part One of the course has served to start us talking about what's practical. What techniques can be used to glean the parameters that will be important in applying the contact mechanics to real surfaces, rather than the abstract mathematical ones? We've talked about a few techniques so far. As needed, we'll look at a few more. Let's get started on Part Two. 

13. The Classical Theory of Elastic Deformation [12] 

Suppose we have an undeformed, continuous material that is at rest. Each point within the solid can be identified by a vector x extending to the point from the origin of some fixed coordinate system. Figure 72 shows what happens when the material is deformed. The point originally at x moves to a new position x'. 

Figure 72. A continuous material at rest is deformed.

Let's define the displacement as

u(x) = x'  x

Clearly, u depends on the original vector position x. 

Consider now two points within an elastic solid. If x and y are two neighboring points in an undeformed elastic solid , as illustrated in Figure 73. Deformation results in the following configuration

x' = x + u(x) and y' = y + u(y)
Figure 73.
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These relations are very general and could describe a uniform translation (when u is constant). Under uniform translation, the internal configuration doesn't change; there is only a rigid translational movement of the entire specimen. We are interested in internal deformations, therefore, the vector separation would be of most interest here. 

y'  x' = y  x + u(y)  u(x)
If the undeformed separation is small, we can write the following expansion:
(12.1) 
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Note that the partial derivative is evaluated at the initial x position. The u displacements are generally small; therefore we can use a first-order approximation. If the solid only undergoes a uniform translation, the partial derivative disappears. 

The partial derivative in Equation 12.1 can be separated into its even and odd components as
(12.2) 
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where the two tensors, ij and Oij, are real numbers that depend on the initial position. The odd tensor Oij represents a local rigid rotation; and therefore doesn't relate to the deformation of the solid that we are interested in. The internal deformation is represented by the even tensor, ij, which is defined as the elastic strain tensor. 

The elastic strain tensor is zero whenever the material is only subjected to a rigid rotation or a simple translation. We return now to the two nearby points in the solid at x and y. A small elastic deformation results in
(12.3) 
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Example 1 

Figure 74 illustrates what happens when an elastic deformation occurs for an arbitrary vector a that is directed along the e1 axis. Let's suppose the two local points that we are looking at are located at the starting and end points of vector a, so that y  x = a. Under the elastic deformation, this vector becomes
(12.4) 
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Figure 74. A small elastic deformation of the vector a.
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There are two changes that occur to a as a result of the deformation:
(1) It's length changes to
(12.5) 
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where
(12.6) 
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(2) a' has a different direction than a because of the non-zero elements 21 and 31. 

Example 2. 

Consider Figure 75 that shows how two vectors that are originally orthogonal are altered by the elastic deformation. 

Figure 75. The effect of a small elastic deformation on Two Initially Orthogonal vectors, a and b.
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Under the deformation, the two vectors become
(12.7) 
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The angle between a' and b' is given by their dot product which is equal to a'b' cos '12 and approximately equal to
(12.8) 
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Therefore, under the deformation, the right angle becomes
(12.9) 
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Example 3. 

Under an elastic deformation, a volume V = abc will change to
(12.10) 
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The trace of the strain tensor gives the fractional change in the volume. Using the definition of the elastic strain tensor provides another way of writing this in terms of the displacement vector u
(12.11) 
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This may also be viewed as a change in the density of the solid:
(12.12) 
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The Stress Tensor 

When we talked about fluid-fluid and solid-vapor interfaces, we introduced the stress tensor. Let's use the following to define an elastic stress tensor:
(12.13) 
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where Fi is the ith component of the force acting on the surface dA which is directed outward and normal to the surface. 

Hooke's law describes small deformations of elastic materials. It states that the local stress is proportional to the local strain (elastic deformation). This stress opposes further deformation. In basic physics, we learn Hooke's law as F = kx as it applies to springs. When the spring is stretched a distance x by a force F, an equal, but opposite force opposes that stretching. In elastic solids, Hooke's law is expressed using tensor notation, where Tij and ij are components of a fourth-rank tensor. Due to symmetry, the maximum number of independent elements is 21. The symmetry of a crystalline, elastic solid further reduces the number of independent elements. Here, we'll just consider the isotropic elastic solid where Hooke's law and the lack of a preferred direction by be used. In this case Tij is a linear combination of two symmetric tensors
(12.14) 
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where ij is the Kronecker delta function which is zero when i is not equal to j and one when i equals j. 

Hooke's law is written: (12.15) 
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where  and  are the Lame coefficients, or moduli. Again, the minus sign indicates the restoring nature of these forces. In calculations, it becomes preferable to use a traceless tensor which is written
(12.16) 
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By using this, Hooke's law is rewritten:
(12.17) 
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The elastic moduli K, , and  have dimensions of force per unit length. 

Hooke's law as written above gives the stress resulting from a given strain. One can also invert this to give the strain induced by a given stress. By taking the trace of the first equation in Equation 12.17, you get
(12.18) 
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Then, by eliminating Tr , the desired form is obtained
(12.19) 
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Example 4. 

A small hydrostatic pressure dp is applied to a uniform medium at rest. The stress tensor is that of an ideal stationary fluid with no convective terms,
(12.20) 
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Applying Equation 12.19 gives the induced, isotropic strain,
(12.21) 
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Since there are no off-diagonal elements, the object retains its shape, but its volume will change according to Equation 12.11, (12.22) 
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Inspection of this equation reveals that K is simply the bulk modulus. 

Example 5. 

Consider an elastic material in the shape of a long, slender bar under a uniform axial stress,
(12.23) 

Tzz = p 


and all other elements are zero. To achieve this, the pressure p is applied to the two ends of the bar and the lateral sides are unstressed. In this case, Equation 12.19 shows that the bar undergoes uniform axial compression,
(12.24) 

[image: image27.jpg]€= — i+
e T

3]

o= -

9K

s
+ ﬂ) T.




Equation 12.24 is usually written (12.25) 
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and E is the Young's modulus. In the transverse direction, there is an expansion that occurs as well that is given by
(12.26) 

[image: image29.jpg]ot

”=(6TF9

9K

Jo=

6u

~5g) T





The ratio of the transverse expansion to the longitudinal compression defines the Poisson's ratio  via
(12.27) 
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The Poisson's ratio is usually between 0 and 0.5. 

Example 6. 

Consider Figure 76 in which a long, slender bar is subjected to a uniform shear stress
(12.28) 

Txy = Tyx = f


and all other elements would be zero. 

Figure 76. A long, slender bar is deformed under a uniform shear stress. The induced force FI per unit area is shown for each side.
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Equation 12.19 implies
(12.29) 
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If this is compared with the deformation we looked at in Example 2, we see that the original right angles change by an amount
(12.30) 
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Here is coefficient  is the shear modulus. 

Of the four quantities, E, K, , and , only two are independent. Therefore, K and  are eliminated by these relations:
(12.31) 
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These may be used to rewrite Equation 12.19 in a more convenient form:
(12.32) 
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To continue to the next section, click here.
To return to the main page, click here. 

If you have any questions, please e-mail Dr. Marx at dtmarx@siu.edu. 

Surfaces and Contact Mechanics
Last time we introduced a displacement ui (i = 1, 2, 3 or x, y, z) from an initial position as a result of some deformation. The strain components were defined in terms of the displacements due to infinitesimal deformations. We assumed that higher order terms beyond first-order may be neglected. 

14. General Formulation of Elastic Strain and Stress [11] 

The components of the strain tensor are written out in Cartesian coordinates as
(13-1) 
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Note that the shear strains are considered symmetric:
(13-2) 

zy = yz
xz = zx
yx = xy 

We can also write the strain tensor components in cylindrical and spherical coordinates. Figure 77 shows the displacement in the cylindrical coordinate system. 

Figure 77. Deformation in Cylindrical Coordinates.
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(13-3) 
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Figure 78 shows the displacement in the spherical coordinate system. 

Figure 78. Deformation in Spherical Coordinates.
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(13-4) 
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The stress at a point P within an elastic solid is examined as follows. Consider Figure 79 in which the solid is divided into two regions, (1) below P and (2) above P, a surface S. A surface element S surrounds the point P and has a unit normal vector n. The forces exerted by the material in region 2 on the material in region 1 can be reduced to single force F and a torque G as shown. The torque is also called a moment in many texts. 

Figure 79. A surface is drawn within an elastic solid, dividing it into two regions. Point P is within a small surface element S. The unit normal vector is drawn from region 1 to region 2.
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Let's assume that the following is correct:
(13-5) 
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where Fn is the stress vector across the surface at P. The general form of Fn is

Fn = Fnxe1 + Fnye2 + Fnze3.

The forces acting on a volume element V of the elastic material are separated into surface and bulk forces. An example of a bulk force is that due to gravity. We can assume that the forces acting on a small volume element surrounding P are equivalent to a force R acting at P and a torque (or moment) M. In this case, we have
(13-6) 
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Here F is a bulk force per unit volume that is a continuous function of (x, y, z). Let's have a look at a volume surrounding the point P in the shape of a rectangular parallelepiped with sides 2a, 2b, and 2c as shown in Figure 80. 

Figure 80. The stresses labeled xy and yx produce a torque about the z axis.
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The moment of the volume in the z direction is produced by the bulk forces acting on it. Since the element remains in equilibrium, the sum of the torques must be zero:
(13-7) 
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We note that the volume of the parallelepiped is V = 8abc, so Equation 13-7 becomes,
(13-8) 
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As the V goes to zero, M goes to zero (based on Equation 13-6). This leads to the symmetry,

yx = xy
Similarly, one can show that the other stresses would also be symmetrical:

yz = zy
xz = zx
The tetrahedron shown in Figure 81 has three sides parallel to the coordinate planes. Let's consider forces acting in the y direction. If S is the area ABC and the distance of P to the ABC plane is h, then we can write

area PBC = lS
area PCA = mS
area PAB = nS

Figure 81. A tetrahedral volume element PABC is shown. The unit vector n is normal to the plane ABC.
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Also the volume of the tetrahedron is V = (1/3)hS. If the tetrahedron is in equilibrium, then
(13-9) 
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If h and S are small, then the surface stresses can be approximated by their values at P. Dividing, Equation (13-9) by S and allowing V to go to zero gives
(13-10) 
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This leads to the three equations for the stresses:
(13-11) 
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The normal stresses, xx, yy, and zz, are usually written x, y, and z, respectively. The nine components of the stress indicated on the right hand side of Equation 13-11 make up the stress tensor which is of rank 2. 

To continue to the next section, click here.
To return to the main page, click here. 

If you have any questions, please e-mail Dr. Marx at dtmarx@siu.edu. 
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	Acoustic Properties, Near Field Table 



Table 1 

Acoustic Properties of Materials
Material
Longitudinal Velocity
Shear Velocity
Acoustic Impedance
(in/µs)*
(m/s)
(in/µs)*
(m/s)
(Kg/m2s x 106)
Acrylic resin our material
(Perspex®)
0.107
2,730
0.056
1,430
3.22
Aluminum
0.249
6,320
0.123
3.130
17.06
Beryllium
0.508
12,900
0.350
8,880
23.5
Brass, naval
0.174
4,430
0.083
2,120
37.30
Cadmium
0.109
2,780
0.059
1,500
24.02
Columbium
0.194
4,920
0.083
2,100
42.16
Copper
0.183
4,660
0.089
2,260
41.61
Glycerine
0.076
1,920
-
-
2.42
Gold
0.128
3,240
0.047
1,200
62.60
Inconel®
0.229
5,820
0.119
3,020
49.47
Iron
0.232
5,900
0.127
3,230
45.43
Iron, cast (slow)
0.138
3,500
0.087
2,200
25.00
Iron, cast (fast)
0.220
5,600
0.126
3,220
40.00
Lead
0.085
2,160
0.028
700
24.49
Manganese
0.183
4,660
0.093
2,350
34.44
Mercury
0.057
1,450
-
-
19.66
Molybdenum
0.246
6,250
0.132
3,350
63.75
Motor Oil (SAE 20 or 30)
0.069
1,740
-
-
1.51
Nickel, pure
0.222
5,630
0.117
2.960
49.99
Platinum
0.156
3,960
0.066
1,670
84.74
Polyamide (nylon, Perlon®) (slow)
0.087
2,200
0.043
1,100
2.40
Polyamide (nylon, Perlon®) (fast)
0.102
2,600
0.047
1,200
3.10
Polystyrene
0.092
2,340
-
-
2.47
Polyvinylchloride, PVC, hard
0.094
2,395
0.042
1,060
3.35
Silver
0.142
3,600
0.063
1,590
37.76
Steel, 1020
0.232
5,890
0.128
3,240
45.63
Steel, 4340
0.230
5,850
0.128
3,240
45.63
Steel 302 austenitic stainless
0.223
5,660
0.123
3,120
45.45
Steel 347 austenitic stainless
0.226
5,740
0.122
3,090
45.40
Tin
0.131
3,320
0.066
1,670
24.20
Titanium, Ti 150A
0.240
6,100
0.123
3,120
27.69
Tungsten
0.204
5,180
0.113
2,870
99.72
Uranium
0.133
3,370
0.078
1,980
63.02
Water (20° C)
0.058
1,480
-
-
1.48
Zinc
0.164
4,170
0.095
2,410
29.61
Zirconium
0.183
4,650
0.089
2,250
30.13
Table 2 

Near Field Distance of Flat Transducers in Water
Frequency (MHz)
Element Diameter (Inches)
N (Inches)
Focal Length Min (Inches)
(PTF) ** Max (Inches)
0.5
1.50
4.757
2.15
3.80
1.125
2.661
1.50
2.10
1.00
2.095
1.25
1.65
0.75
1.164
0.78
0.93
1.0
1.50
9.559
2.50
7.65
1.125
5.366
1.90
4.30
1.00
4.235
1.625
3.38
0.75
2.372
1.00
1.90
0.50
1.043
0.60
0.80
2.25
1.50
21.534
2.70
14.50
1.125
12.099
2.15
9.50
1.00
9.554
1.875
7.60
0.75
5.364
1.00
4.30
0.50
2.374
0.80
1.90
0.375
1.329
0.50
1.06
0.25
0.584
0.35
0.45
3.5
1.00
14.868
1.95
11.25
0.75
8.350
1.00
6.65
0.50
3.699
0.83
2.95
0.375
2.073
0.60
1.65
0.25
0.914
0.385
0.70
5.0
1.00
21.243
1.95
14.40*
0.75
11.932
1.00
9.50
0.50
5.287
0.75
4.20
0.375
2.965
0.60
2.35
0.25
1.309
0.43
1.00
7.5
0.75
17.900
1.00
12.75*
0.50
7.933
0.75
6.30*
10
1.00
42.490
2.00
20.00*
0.75
23.868
1.00
15.375*
0.50
10.579
0.75
8.40*
0.375
5.934
0.60
4.75*
0.25
2.622
0.46
2.10
15
0.50
15.870
0.75
11.75*
0.375
8.902
0.60
7.10*
0.25
3.935
0.50
3.15*
20
0.25
5.247
0.50
4.20*
0.125
1.290
0.25
1.00*
25
0.25
6.559
0.50
5.25*
* Conversion Factor: 1 m/s = 3.937 x 10-5 in/µS Source: Nondestructive Testing Handbook 2nd Edition Volume 7 Ultrasonic Testing ASNT 1991 ed Paul McIntire 

Near Field Distances of Flat Transducers in Water
The near field values in this table have been determined using the following equation:
Note that equation 4 on Page 33 was derived from this expression. The calculations were carried out assuming an ultrasonic velocity in water of 0.586 x 105 in/sec at 22°C and using the actual transducer element diameters. It should be noted that the actual transducer element diameters are slightly smaller than the nominal element diameters listed in the tables in the catalog.
The minimum and maximum practical focal lengths have been calculated by considering the acoustic and mechanical limitations of each config- uration. These limitations are a function of transducer frequency, element diameter, and case dimensions. There may be exceptions to the limits listed in the table.
** Panametrics' Standard Case Style, Large Diameter Case Style, Slim Line Case Style, and Pencil Case Style Immersion Transducers with straight connectors can be focused between the Minimum and Maximum Point Target Focal (PTF) distance limits listed in Table 2. Please consult Panametrics before ordering a transducer focused outside these limits. 

‡ Consideration should be given to attenuation effects which increase linearity and with the square of frequency and the square of bandwidth.
In applications where long water paths are required the effects of frequency dependent attenuation should be checked per ASTM E 1065 Annex A7. It is advisable to consider the effects of frequency dependent attenuation if the focal distance equals or exceeds the following values:
Frequency
Focal Length
5.0MHz
13 in.
7.5MHz
6 in.
10MHz
3.5 in.
15MHz
1.5 in.
20MHz
0.8 in.
25MHz
0.5 in.
30MHz
0.4 in.
RELEVANT LINKS 

· TRANSDUCER INDEX 
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