
(12) United States Patent 
Zummo et al. 

(54) VARIABLE STEP-SIZE LEAST MEAN 
SQUARE METHOD FOR ESTIMATION IN 
ADAPTIVE NETWORKS 

(75) Inventors: Salam A. Zummo, Dhahran (SA); 
Muhammad Orner Bin Saeed, Dhahran 
(SA); Azzedine Zerguine, Dhahran (SA) 

(73) Assignee: King Fahd University of Petroleum 
and Minerals, Dhahran (SA) 

( *) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.c. 154(b) by 329 days. 

This patent is subject to a tenninal dis­
claimer. 

(21) Appl. No.: 12/913,482 

(22) Filed: Oct. 27, 2010 

(65) Prior Publication Data 

US 2012/0106357 Al May 3, 2012 

(51) Int. Cl. 
H04L 12/26 
G06F 7/60 

(52) U.S. Cl. 

(2006.01) 
(2006.01) 

USPC ............................................... 3701242; 703/2 

(58) Field of Classification Search 
USPC .............................................. 703/2; 370/242 
See application file for complete search history. 

(56) References Cited 

U.S. PATENT DOCUMENTS 

6,026,121 A 
6,377,611 Bl 

212000 Sadjadpour 
4/2002 Hwang 

Node 1 
{d2 (i), U 1 I} , 

Node N 

{dN(i), UN'} , 

111111 1111111111111111111111111111111111111111111111111111111111111 
US008547854B2 

(10) Patent No.: US 8,547,854 B2 
(45) Date of Patent: *Oct. 1,2013 

6,741,707 B2 
7,298,774 B2 

200210041678 Al 
2005/0201457 Al 
2008/0136645 Al 
2008/0260141 Al 
201210109600 Al * 

5/2004 Ray et al. 
1112007 Miyata et al. 
4/2002 Basburg-Ertem et al. 
912005 Allred et al. 
6/2008 Lin et al. 

1012008 Givens 
5/2012 Saeed et al. ....................... 703/2 

FOREIGN PATENT DOCUMENTS 

CN 
KR 

101252559 A 
20050001888 A 

8/2008 
112005 

OTHER PUBLICATIONS 

R.H. Kwong and E.W. Johnston, "A Variable Step Size LMS Algo­
rithm", IEEE Transactions on Signal Processing, vol. 40, No.7, Jul. 
1992. 
W.Y. Chen andR.A. Haddad, "A Variable Step Size LMSAlgorithm", 
Circuits and Systems,1990, Proceedings of the 33rd Midwest Sym­
posium on, Aug. 12-14, 1990, vol. 1, pp. 423-426. 
M.O. Bin Saeed, A. Zerguine and S.A. Zununo, "Variable Step-Size 
Least Mean Square Algorithms Over Adaptive Networks", 1 (jh Inter­
national Conference on Information Science, Signal Processing and 
their Applications (ISSPA 2010), May 2010. 
A.B. Sayed, Adaptive Filters, New York: Wiley, 2008, pp. 163-166. 

* cited by examiner 

Primary Examiner - Mark Rinehart 
Assistant Examiner - Gbemileke Onamuti 
(74) Attorney, Agent, or Firm - Richard C. Litman 

(57) ABSTRACT 

The variable step-size least mean square method for estima­
tion in adaptive networks uses a variable step-size to provide 
estimation for each node in the adaptive network, where the 
step-size at each node is detennined by the error calculated 
for each node, as opposed to conventional least mean square 
algorithms used in adaptive filters and the like, where the 
choice of step-size reflects a tradeoff between misadjustment 
and the speed of adaptation. 
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VARIABLE STEP-SIZE LEAST MEAN 
SQUARE METHOD FOR ESTIMATION IN 

ADAPTIVE NETWORKS 

BACKGROUND OF THE INVENTION 

I. Field of the Invention 

2 
sion LMS (DLMS), where each node combines its own esti­
mate with the estimates of its neighbors using some combi­
nation technique, and then the combined estimate is used for 
updating the node estimate. This method is referred to as 
Combine-then-Adapt (CTA) diffusion. It is also possible to 
first update the estimate using the estimate from the previous 
iteration and then combine the updates from all neighbors to 
form the final estimate for the iteration. This method is known 
as Adapt-then-Combine (ATC) diffusion. Simulation results 

The present invention relates generally to sensor networks 
and, particularly, to wireless sensor networks in which a 
plurality of wireless sensors are spread over a geographical 
location. More particularly, the invention relates to estimation 
in such a network utilizing a variable step-size least mean 
square method for estimation. 

10 show that ATC diffusion outperforms CTA diffusion. 

2. Description of the Related Art 
In reference to wireless sensor networks, the term "diffu- 15 

sion" is used to identify the type of cooperation between 
sensor nodes in the wireless sensor network. That data that is 
to be shared by any sensor is diffused into the network in order 

Using LMS, the ATC diffusion algorithm is given by: 

(2) 

to be captured by its respective neighbors that are involved in 
cooperation. 

Wireless sensor networks include a plurality of wireless 
sensors spread over a geographic area. The sensors take read­
ings of some specific data and, if they have the capability, 
perform some signal processing tasks before the data is col­
lected from the sensors for more detailed thorough process­
ing. 

where {CZk } ZENk is a combination weight for node k, which is 
20 fixed, and {fzJzd is the local estimate for each node neigh­

boring node k, and flk is the node step-size. 
The conventional Diffusion Lease Mean Square (LMS) 

technique uses a fixed step-size, which is chosen as a trade-off 
between steady-state misadjustment and speed of conver-

25 gence. A fast convergence, as well as low steady-state mis­
adjustment, cannot be achieved with this technique. 

A "fusion-center based" wireless network has sensors 
transmitting all the data to a fixed center, where all the pro­
cessing takes place. An "ad hoc" network is devoid of such a 
center and the processing is performed at the sensors them- 30 

selves, with some cooperation between nearby neighbors of 
the respective sensor nodes. 

Recently, several algorithms have been developed to 
exploit this nature of the sensor nodes and cooperation 
schemes have been formalized to improve estimation in sen- 35 

sor networks. 
Least mean squares (LMS) algorithms are a class of adap­

tive filters used to mimic a desired filter by finding the filter 
coefficients that relate to producing the least mean squares of 
the error signal (i.e., the difference between the desired and 40 

the actual signal). The LMS algorithm is a stochastic gradient 
descent method, in that the filter is only adapted based on the 
error at the current time. 

FIG. 2 diagrammatically illustrates an adaptive network 
having N nodes. In the following, boldface letters are used to 45 

represent vectors and matrices and non-bolded letters repre­
sent scalar quantities. Matrices are represented by capital 
letters and lower-case letters are used to represent vectors. 
The notation (.f stands for transposition for vectors and 
matrices, and expectation operations are denoted as E[ .J. FIG. 50 

2 illustrates an exemplary adaptive network having N nodes, 
where the network has a predefined topology. For each node 
k, the number of neighbors is given by Nk , including the node 

Thus, a variable step-size least mean square method for 
estimation in adaptive networks solving the aforementioned 
problems is desired. 

SUMMARY OF THE INVENTION 

The variable step-size least mean square method for esti­
mation in adaptive networks uses a variable step-size to pro­
vide estimation for each node in the adaptive network, where 
the step-size at each node is determined by the error calcu-
lated for each node. This is in contrast to conventional least 
mean square algorithms used in adaptive filters and the like, in 
which the choice of step-size reflects a tradeoff between 
misadjustment and the speed of adaptation. 

In a first embodiment, a variable step-size incremental least 
mean square method for estimation in adaptive networks is 
given by the following steps: (a) establishing a network hav­
ing N nodes, where N is an integer greater than one, and 
establishing a Hamiltonian cycle among the nodes such that 
each node is connected to two neighboring nodes, one from 
which it receives data and one to which it transmits data; (b) 
establishing an integer i and initially setting i=l; (c) calculat­
ing an output of the adaptive network at each node k as 
dk(i)=Ukiwo+vk(i), where Uki represents a known regressor 
row vector of length M, WO ~epresents an unknown colunm 

k itself, as shown in FIG. 2. At each iteration i, the output of 
the system at each node is given by: 

dk(i)~Uk,iWO+Vk(i), (1) 

where Uk i is a known regressor row vector oflength M, WO is 
an unkn~wn colunm vector oflength M, and vk(i) represents 
noise. The output and regressor data are used to produce an 
estimate of the unknown vector, given by 1j!ki' 

vector oflength M and vk(i) represents noise in the adaptive 
network, where M is an integer; (d) calculating an error value 
ek(i) at each node k as ek(i)=dk(i)-uk iY k-l i' where y k i repre-

ss sents an estimate of an output vector for each node k at 
iteration f, (e) calculating a node step size flk for each node k 
as flk(i)=Uflk(i-1 )+ye2 (i), where U and y are unitless, select­
able parameters; (f) calculating an estimate of an output vec­
tor Yki for each node k as Yki=Yk-l i+flk(i)uTkiT(dk(i)-uki 

60 Y k-l ,); (g) if ek(i) is greater tha'n a selected erra'r threshold, 
the~ setting i=i+1 and returning to step (c); otherwise, (h) 
defining a set of output vectors Y k for each node k, where 
y k =y k i; and (i) storing the set of output vectors in computer 

The adaptation can be performed using tw~ different tech­
niques. The first technique is the Incremental Least Mean 
Squares (ILMS) method, in which each node updates its own 
estimate at every iteration and then passes on its estimate to 65 

the next node. The estimate of the last node is taken as the final 
estimate of that iteration. The second technique is the Diffu-

readable memory. 
In an alternative embodiment, a variable step-size diffusion 

least mean square method for estimation in adaptive networks 
is given by the following steps: (a) establishing an adaptive 
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network having N nodes, where N is an integer greater than 
one, and for each node k, a number of neighbors of node k is 
given by Nk , including the node k, where k is an integer 
between one and N; (b) establishing an integer i and initially 
setting i=l; (c) calculating an output of the adaptive network 

4 

at each node k as dk(i)=Ukiwo+vk(i), where Uki represents a 
known regressor row vect~r of length M, WO 'represents an 
unknown column vector of length M and vk(i) represents 
noise in the adaptive network, where M is an integer; (d) 
calculating an error value ek(i) at each node k as ek(i)=dk(i)- 10 

Uk iY k i-U where y k i represents an estimate of an output vector 
fo~ e~ch node k at iteration f, (e) calculating a node step size 

lated for each node, This is in contrast to conventional least 
mean square algorithms used in adaptive filters and the like, in 
which the choice of step-size reflects a tradeoff between 
misadjustment and the speed of adaptation, An example of a 
conventional LMS algorithm is shown in chapter ten of A H, 

Sayed, Adaptive Filters, New York: Wiley, 2008, pgs, 163-
166, An example of a variable step-size LMS algorithm is 
shown in R, H, Kwong and E, W Johnston, "A Variable Step 
Size LMS Algorithm", IEEE Transactions on Signal Process­
ing, VoL 40, No, 7, July 1992, each of which is herein incor­
porated by reference in its entirety, 

flk for each node k as flk(i)=Uflk(i -1 +ye2 (i), where U and y are 
unitless, selectable parameters; (f) calculating a local esti­
mate for each node neighboring node k, fk i' for each node k as 15 

fki=Yki_l+flkUkiT(dk(i)-ukiYki_l); (g) cal~ulating an estimate 
of an ~utput v~ctor y k,i fo~ e~ch node k as 

In a first, incremental variable step-size least mean square 
method, the estimate of the unknown vector y k,i is given by: 

(3) 

Nk 

Yk,i = ~ c&it,;, 
1=1 

20 

Every node updates its estimate based on the updated estimate 
coming from the previous node, The error is given by: 

(4) 

The node step size flk is given by: 

where I is an integer, Clk represents a combination weight for 
node k, which is fixed; (h) if ek(i) is greater than a selected 25 

error threshold, then setting i=i+l and returning to step (c); 
otherwise, (i) defining a set of output vectors Y k for each node 

(5) 

where U and y are controlling parameters, Updating equation 
(3) with the step-size given by equation (5) results in the 
variable step-size incremental least mean square method 
defined by the following recursion: 

k, where y k =y k i; and G) storing the set of output vectors in 
computer read~ble memory, 

These and other features of the present invention will 30 

become readily apparent upon further review of the following 
specification, 

(6) 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG, 1 is a block diagram of a system for implementing a 
variable step-size least mean square method for estimation in 
adaptive networks according to the present invention, 

FIG, 2 is a diagram schematically illustrating an adaptive 
network with N nodes, 

FIG, 3 is a diagram schematically illustrating network 
topology for an exemplary simulation of the variable step­
size least mean square method for estimation in adaptive 
networks according to the present invention, 

FIG, 4A is a graph of signal-to-noise ratio as chosen for 
simulation at each node in the exemplary simulation of FIG, 
3, 

FIG, 4B is a graph of simulated values of noise power at 
each node in the exemplary simulation of FIG, 3, 

FIGS, 5A and 5B are comparison plots illustrating mean 
square deviation as a function of time for two exemplary 
scenarios using the variable step-size least mean square 
method for estimation in adaptive networks according to the 
present invention, 

FIGS, 6A and 6B are comparison plots illustrating steady­
state mean square deviations at each node for the exemplary 
scenarios of FIGS, 5A and 5B, respectively, 

Similar reference characters denote corresponding fea­
tures consistently throughout the attached drawings, 

DETAILED DESCRIPTION OF THE PREFERRED 
EMBODIMENTS 

Thus, the variable step-size incremental least mean square 
method is given by the following steps: (a) establishing an 

35 adaptive network having N nodes, where N is an integer 
greater than one, and for each node k, a number of neighbors 
of node k is given by N k' including the node k, where k is an 
integer between one and N, and establishing a Hamiltonian 

40 cycle among the nodes such that each node is connected to 
two neighboring nodes, each node receiving data from one of 
the neighboring nodes and transmitting data to the other 
neighboring node; (b) establishing an integer i and initially 
setting i=l; (c) calculating an output of the adaptive network 

45 at each node k as dk(i)=Ukiwo+vk(i), where Uki represents a 
known regressor row vect~r of length M, WO 'represents an 
unknown colunm vector of length M and vk(i) represents 
noise in the adaptive network, where M is an integer; (d) 
calculating an error value ek(i) at each node k as ek(i)=dk(i)-

50 Uk iY k-l i; (e) calculating a node step size for each node k as 
fl)i)=dflk(i-l )+ye2 (i); (f) calculating an estimate of an output 
vector Yk,i for each node k as Yk,i=Yk_l,i+flk(i)uk/(dk(i)-uk,i 
Yk-l,,); (g) if ek(i) is greater than a selected error threshold, 
then setting i=i+l and returning to step (c); otherwise, (h) 

55 defining a set of output vectors Y k for each node k, where 
Yk=Yk,i; and (i) storing the set of output vectors in computer 
readable memory, 

In an alternative embodiment, a second, diffusion variable 
60 step-size least mean square method of estimation is used, The 

diffusion variable step-size least mean square method of esti­
mation is based upon equation set (2), and the error is given 
by: 

The variable step-size least mean square method for esti­
mation in adaptive networks uses a variable step-size to pro- 65 

vide estimation for each node in the adaptive network, where 
the step-size at each node is detennined by the error calcu-

(7) 
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Applying this error to equation (5) yields the following 
update equations: 

(8) 5 

Thus, the variable step-size diffusion least mean square 10 

method is given by the following steps: (a) establishing an 
adaptive network having N nodes, where N is an integer 
greater than one, and for each node k, a number of neighbors 
of node k is given by Nk , including the node k, where k is an 
integer between one and N; (b) establishing an integer i and 15 

initially setting i= I; (c) calculating an output of the adaptive 
network at each node k as dk(i)=Uk iWO +vk(i), where Uk i rep­
resents a known regressor row vector of length M, W

O ;epre­
sents an unknown column vector of length M and v k(i) rep- 20 

resents noise in the adaptive network, where M is an integer; 
(d) calculating an error value ek(i) at each node k as ek(i)=dk 
(i)-uk iY k i-I; (e) calculating a node step size for each node k as 
flk(i)=~fl;(i-I )+ye2(i); (f) calculating a local estimate for each 
node neighboring node k, fk i' for each node k as fk i =y k i-I + 25 

flkUk/( dk(i)-uk,iY k,i-l); (g) c~lculating an estimate of an ~ut­
put vector y k,i for each node k as 

Nk 

Yk,i = ~ c&it,;, 
1=1 

30 

6 

(14) 

(15) 

where M is the steady-state misadjustment for the step-size, 
given by: 

1 - 1 - 2 " Tr(L) 
1-0:2 

J 
[ (3 - 0:)ycr

2
k 1 (16) 

The above can be directly incorporated into steady-state 
equations for calculation of mean square deviation (MSD) 
and excess mean square error (EMS E) in order to obtain the 
values ofMSD and EMSE, Similarly, the variance relation for 
the variable step-size diffusion least mean square method is 
given by: 

(17) 

(18) 

where 

s=bvec{S}, and (19) 

b=bvec{RpL}, (20) 

where ~ is the noise auto-correlation matrix, bvec{,} is the where I is an integer, Clk represents a combination weight for 
node k, which is fixed; (h) if ek(i) is greater than a selected 
error threshold, then setting i=i+1 and returning to step (c); 
otherwise, (i) defining a set of output vectors Y k for each node 
k, where y k =y k i; and G) storing the set of output vectors in 
computer read~ble memory, 

35 block vectorization operator, D is the block diagonal step-size 
matrix for the whole network, G is the block combiner matrix, 
A is the block vectorized form of the fourth order weighted 
moment of the regressor vectors, and e is the block Kronecker 
product Applying equation (11), equations (18) and (20) 

In order to perform a performance analysis of the variable 
step-size incremental least mean square method, the variance 
relation is given by: 

(9) 

(10) 

where S is a Gaussian normalized weighting matrix, Lk is a 
diagonal matrix containing the eigenvalues for the regressor 
vector at node k, and 0v / is the noise variance, Equations (9) 
and (10) show how the'variance of the Gaussian normalized 
error vector Y k iterates from node to node, When equation (5) 
is incorporated into the results, an independence assumption 
is invoked, resulting in the following: 

(11) 

thus yielding the following new recursions, respectively, from 
equations (9) and (10): 

40 respectively yield: 

45 

F=(GTe 
G*)[IN'M'-(Im,tcLEfD])-(LEfDJeINM)+E[(DeD)AJJ (21) 

b=bvec{R"Eld JL}, (22) 

Since the step-size matrix is block-diagonal, the above 
operations are relatively straightforward, Steady-state matri­
ces may be formed for the step-sizes using equations (14) and 
(15), Using these matrices directly in the steady-state equa-

50 tions provides the MSD and EMSE values for the variable 
step-size diffusion least mean square method, 

In the below, simulation examples are described to illus­
trate the performance of the variable step-size LMS methods 
over adaptive networks, Results are compared with conven-

55 tional fixed-step LMS methods, A network topology with 
N=15 nodes is considered in FIG, 3, For the variable step-size 
incremental LMS method, a is set to 0,997 and y is set to 
2xlO-4

, For the variable step-size diffusion LMS method, a is 

(12) 60 

set to 0,998 and y is set to 2xlO-5
, These exemplary values 

ensure that the convergence rate is the same for all methods, 
Two distinct scenarios are presented in the below results, In 

S'=S-E [l1k,i-1] (L0'+SLk)+ELuk,i_12 J(LkTr(SLk)+2Lk 
SLk ), (13) 

At steady state, the step-size expectation values in equa- 65 

tions (12) and (13), jl=Eflk = and jl2=Eflk =2, respectively, are 
given by: ' , 

the first scenario, the signal-to-noise (SNR) and the noise 
power profile are shown in FIGS, 4A and 4B, respectively, In 
the second scenario, the noise power for Node 5 is increased 
from 6xlO-4 to IxlO-2, which reduces the SNR to approxi­
mately 18 dB, As a result, there is a visible deterioration in 
performance, 
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FIG. SA illustrates the results obtained for the first sce­
nario. As can be seen in FIG. SA, there is a great improvement 
in performance obtained through the usage of both incremen-
tal and diffusion variable step-size LMS methods. There is an 
approximately 25 dB difference in favor of the variable step­
size diffusion LMS method, compared to the conventional 
fixed step-size method. In the second scenario, the perfor­
mance of the variable step-size diffusion LMS method dete­
riorates only by approximately 3 dB, whereas that of the 
variable step-size incremental LMS method deteriorates by 10 

nearly 9 dB, as shown in FIG. 5B. 
FIGS. 6A and 6B illustrate the steady-state MSD values at 

each node for both the incremental and diffusion methods, 
with the variable step-size diffusion LMS method being 
shown to be superior to both the incremental method and the 15 

fixed step-size conventional LMS method. 
FI G. 1 illustrates a generalized system 10 for implementing 

the variable step-size least mean square method for estima­
tion in adaptive networks, although it should be understood 
that the generalized system 10 may represent a stand-alone 20 

computer, computer terminal, portable computing device, 
networked computer or computer terminal, or networked por­
table device. Data may be entered into the system 10 by the 
user via any suitable type of user interface 18, and may be 
stored in computer readable memory 14, which may be any 25 

suitable type of computer readable and programmable 
memory. Calculations are performed by the processor 12, 
which may be any suitable type of computer processor, and 
may be displayed to the user on the display 16, which may be 
any suitable type of computer display. The system 10 prefer- 30 

ably includes a network interface 20, such as a modem or the 
like, allowing the computer to be networked with either a 
local area network or a wide area network. 

The processor 12 may be associated with, or incorporated 
into, any suitable type of computing device, for example, a 35 

personal computer or a programmable logic controller. The 
display 16, the processor 12, the memory 14, the user inter­
face 18, network interface 20 and any associated computer 
readable media are in communication with one another by 
any suitable type of data bus, as is well known in the art. 40 

Additionally, other standard components, such as a printer or 
the like, may interface with system 10 via any suitable type of 
interface. 

Examples of computer readable media include a magnetic 
recording apparatus, an optical disk, a magneto-optical disk, 45 

and/or a semiconductor memory (for example, RAM, ROM, 
etc.). Examples of magnetic recording apparatus that may be 
used in addition to memory 14, or in place of memory 14, 
include a hard disk device (HDD), a flexible disk (FD), and a 
magnetic tape (MT). Examples of the optical disk include a 50 

DVD (Digital Versatile Disc), a DVD-RAM, a CD-ROM 
(Compact Disc-Read Only Memory), and a CD-R (Record­
able)/RW. 

It is to be understood that the present invention is not 
limited to the embodiments described above, but encom- 55 

passes any and all embodiments within the scope of the fol­
lowing claims. 

We claim: 
1. A computer software product that includes a non-tran­

sitory storage medium readable by a processor, the non-tran- 60 

sitory storage medium having stored thereon a set of instruc­
tions for performing variable step-size least mean square 
estimation in adaptive wireless sensor networks, the instruc­
tions comprising: 

(a) a first set of instructions which, when loaded into main 65 

memory and executed by the processor, causes the pro­
cessor to establish a Hamiltonian cycle among N wire-

8 
less sensor nodes of an adaptive wireless sensor net­
work, where N is an integer greater than one, wherein 
each wireless sensor node is counected to two neighbor­
ing wireless sensor nodes, each wireless sensor node 
receiving data from a first of the neighboring wireless 
sensor nodes and transmitting data to a second of the 
neighboring wireless sensor nodes; 

(b) a second set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to initially set an integer i equal to one; 

(c) a third set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to calculate an output of the adaptive wireless 
sensor network at each wireless sensor node k as dk(i)= 
Uk iWO +v k(i), where Uk irepresents a known regressor row 
ve"ctor of length M, ~o represents an unknown column 
vector of length M and Vk (i) represents noise in the 
adaptive wireless sensor network, wherein M is an inte­
ger; 

(d) a fourth set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to calculate an error value ek(i) at each wire­
less sensor node k as ek(i)=dk(i)-UkiYk -1 i' wherein 
y k irepresents an estimate of an outpu"t vect~r for each 
wireless sensor node k at iteration i; 

( e) a fifth set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to calculate a node step size flk for each wireless 
sensor node k as flk(i)=Uflk(i-l )+ye2 (i), wherein U and y 
are unitless, selectable parameters; 

(f) a sixth set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to calculate the estimate of the output vector Y k i 

for each wireless sensor node k as Yki=Yk-1 i+flk(i)uk? 
(dk(i)-uk.iYk_1); . . . 

(g) a seventh set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to set i=i+l and return to the third set of 
instructions if ek(i) is greater than a selected error thresh­
old; 

(h) an eighth set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to define a set of output vectors Yk for each 
wireless sensor node k, where y k =y k i; and 

(i) a ninth set of instructions which, wh~n loaded into main 
memory and executed by the processor, causes the pro­
cessor to store storing the set of output vectors in the 
non-transitory storage medium. 

2. A computer software product that includes a non-tran­
sitory storage medium readable by a processor, the non-tran­
sitory storage medium having stored thereon a set of instruc­
tions for performing variable step-size least mean square 
estimation in adaptive wireless sensor networks, the instruc­
tions comprising: 

(a) a first set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to initially set an integer i equal to one; 

(b) a second set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to calculate an output of an adaptive wireless 
sensor network having N wireless sensor nodes, wherein 
N is an integer greater than one, at each wireless sensor 
node k as dk(i)=Ukiwo+vk(i), wherein Uki represents a 
known regressor ra"w vector oflength M,"wo represents 
an unknown colunm vector oflength M and v k(i) repre­
sents noise in the adaptive wireless sensor network, 
wherein M is an integer, for each wireless sensor node k, 
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a number of neighbors of wireless sensor node k is given 
by N k' including the wireless sensor node k, wherein k is 
an integer between one and N; 

(c) a third set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to calculate an error value ek(i) at each wireless 
sensor node ~ as ek(i)=dk(i)-uk,iYk,i_u wherein Yk,i rep­
resents an estimate of an output vector for each wireless 
sensor node k at iteration i; 

(d) a fourth set of instructions which, when loaded into 10 

main memory and executed by the processor, causes the 
processor to calculate a node step size flk for each wire­
less sensor node k as flk(i)=Uflk(i-l)+ye2 (i), wherein u 
and yare unitless, selectable parameters; 

(e) a fifth set of instructions which, when loaded into main 15 

memory and executed by the processor, causes the pro­
cessor to calculate a local estimate for each wireless 
sensor ~ode neighboring wireless sensor node k, fk,i, for 
e,ach wIreless sensor node k as fk,i=Y k,i-l +flk(i)uk/( dk 
(1)-Uk,iYk,i_l); 20 

(f) a sixth set of instructions which, when loaded into main 
memory and executed by the processor, causes the pro­
cessor to calculate an estimate of an output vector Y k . for 
each wireless sensor node k as " 

Nk 

Yk,i = ~ c&it,;, 
1=1 

wherein I is an integer, cZkrepresents a combination weight for 
wireless sensor node k, which is fixed; 

25 

30 

(g) a seventh set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to causes the processor to set i=i+ 1 and return 35 

to the second set of instructions if ek(i) is greater than a 
selected error threshold; 

(h) an eighth set of instructions which, when loaded into 
main memory and executed by the processor, causes the 
processor to define a set of output vectors Y k for each 40 

wireless sensor node k, wherein Yk=Yki; and 
(i) a ninth set of instructions which, when'loaded into main 

memory and executed by the processor, causes the pro­
cessor to store storing the set of output vectors in the 
non-transitory storage medium. 

3. A system for performing variable step-size least mean 
square estimation for an adaptive wireless sensor network, the 
adaptive wireless sensor network having N wireless sensor 
nodes, and for each wireless sensor node k, a number of 

45 

10 
neigh?ors of wireless sensor node k is given by Nk , including 
the wIreless sensor node k, wherein k is an integer between 
one and N, the system comprising: 

a processor; 
computer readable memory coupled to the processor; 
a user interface coupled to the processor; 
a display; and 
software stored in the memory and executable by the pro­

cessor, the software having: 
means for establishing an integer i and initially setting 

i=l; 
means for calculating an output of the adaptive wireless 

sensor network at each wireless sensor node k as 
dk(i)=Uk,iwo +v k(i), wherein Uk,i represents a known 
regressor row vector of length M, WO represents an 
unknown column vector oflength M and vk(i) repre­
sents noise in the adaptive wireless sensor network, 
wherein M is an integer; 

means for calculating an error value ek(i) at each wire­
less sensor node k as ek(i)=dk(i)-uk,iY k,i-l' wherein Y k,i 
represents an estimate of an output vector for each 
wireless sensor node k at iteration i' 

means for calculating a node step size'flk for each wire­
less sensor node k as flk(i)=Uflk(i-l)+ye2 (i), wherein 
u and yare unitless, selectable parameters; 

means for calculating a local estimate for each wireless 
sensor node neighboring wireless sensor node k, fk' 
for reach. wireless sensor node k as fk,i=Y k,i-l +flii) 
Uk,i (dk(I)-Uk,iYk,i_l); 

means for calculating an estimate of an output vector Y k,i 
for each wireless sensor node k as 

Nk 

Yk,i= ~ Clk!t,i, 

1=1 

wherein I is an integer, and cZkrepresents a fixed combination 
weight for wireless sensor node k; 

means for setting i=i+l and recalculating the output of 
the adaptive wireless sensor network at each wireless 
sensor node k if ek(i) is greater than a selected error 
threshold; and 

means for establishing a set of output vectors Y k for each 
wireless sensor node k, wherein Yk=Yk,i' and storing 
the set of output vectors in the computer readable 
memory if ek(i) is less than or equal to a selected error 
threshold. 

* * * * * 


