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Union Bounds on the Bit Error Probability of
Coded MRC in Nakagami-m Fading

Salam A. Zummo, Member, IEEE

Abstract—1In this letter new union bounds are derived for
coded maximal ratio combining (MRC) over Nakagami-m fading
channels. The union bounds are expressed in the product form,
which makes them easily evaluated using the transfer function
of the code. The bounds are general to any diversity order and
coding scheme with a known transfer function. Results show that
the new bounds are tight to simulation results for wide ranges
of diversity orders and Nakagami parameters.

Index Terms— Diversity, MRC, union bound, error probability,
Rayleigh, Nakagami-m, fading, convolutional codes, TCM.

I. INTRODUCTION

IVERSITY is an effective technique to mitigate the

effect of fading in wireless communication systems.
The diversity gain is obtained by combining independently
faded copies of the transmitted signal at the receiver. Among
the diversity combining schemes are equal-gain combining
(EGC), the generalized selection combining (GSC) and the
maximal-ratio combining (MRC), in which the outputs of the
matched filters of the diversity branches are summed after
being weighted by the fading attenuation of each branch.
The resultant signal-to-noise ratio (SNR) at the output of the
combiner is the sum of the SNR’s of the M branches.

The performance of coded MRC systems over Rayleigh
fading channels was analyzed extensively in the literature [1]—
[4]. In particular, the union bound of in [2] was represented
in the product form which allows the use of the transfer
function of the code. In [5], several bounds on the error
probability of turbo codes over Rayleigh fading channels were
presented. However, a more general statistical fading model is
the Nakagami-m distribution [6]. Existing union bounds for
coded MRC over Nakagami-m fading channels rely on the
use of the integral representation of the erfc(.) function, which
results in bounds that are evaluated via numerical integration,
see as an example [3], [7].

In this letter, we derive new union bounds on the bit error
probability (BEP) of coded MRC systems over Nakagami-m
fading channels. The bounds are presented in the product form
allowing efficient computation of the bound using the transfer
function of the code.

II. SYSTEM MODEL

The transmitter in a coded system is generally composed
of an encoder (e.g., convolutional, turbo, trellis-coded modu-
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lation (TCM), etc.), interleaver and a modulator. The encoder
encodes a block of K information bits into a codeword of L
symbols, S = {s;}£ . The code rate is R. = K/L. Coherent
reception is employed. Hence, the matched filter output of the
it" diversity branch for the [*" symbol in the codeword can
be written as

Yo = V Esa 81 + 214, (N

where F; is the average received signal energy per diversity
branch, a; = {a;;}}, are the fading amplitudes of the M
diversity branches modeled as Nakagami random variables.
Here, we assume ideal interleaving and independent and
identically distributed (i.i.d.) diversity branches. The noise
samples z; = {z,;}}, are i.i.d. complex Gaussian random
variables with zero-mean and noise variance of Nj.

III. PAIRWISE ERROR PROBABILITY

The pairwise error probability (PEP) is defined as the
probability of decoding a codeword S as another codeword
S. In the following the PEP is written in the product form as

L

P(S —8) =K. x [[W(s1,5), 2)

=1
where W (s, §;) is the error weight profile between §; and s;,
and K. is a tightening constant that does not depend on the
error sequence. The case of K. = 1 results in the Chernoff
bound [8]. The form in (2) enables the use of the transfer
function of the code to evaluate the union bound on the BEP.
The conditional PEP for MRC diversity can be written as

L M
P(S — S|A) = P(ZZ <|yl,i — VEa5°

=1 i=1

—lyii — v Esal,i§l|2) > 0‘A>7 3)

where A is a vector containing the fading gains of a codeword.
In the following, we extend [2] to the Nakagami case. Defining
d; = Ey|s; — 5|*/ANy and v = )7 a?,, the conditional
PEP [2] becomes

P(S — S|A) = %erfc

Since the fading affecting different diversity branches are

assumed to be i.i.d. and a;’s are Nakagami random variables,

the probability density function (pdf) [6] of ~; is given by
m'm

M
fﬂ/z ('Y) _ ,ymM—le—m'y’

> > 0.
T(mM) ¥20, m=>05, (5)
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where T'(-) is the Gamma function. The unconditional PEP is
found by averaging (4) over the statistics of the ~;’s as

L
“ 1 oo o0
P(S—>S):§/O /0 erfc del
=1

fy(n) .- fy(y)dn - dyn. o (6)
Using the following change of variables
di
LS T dim and  w; = (1 +di/m), (7

and re-arranging terms [2], the PEP becomes

- 1 1

/ / erfc /Zélwl exp Zélwl
len

xfw(wl)...fw(wLn)dwl...dew (8)

where n = {l : s; # 5} and L, = |n| is the minimum
time diversity of the code. In (8), the pdf’s f, (w;) follow the
same form of (5) with w; replacing . Note that the variables
{w;} that appear in (8) are different from those in (7). Define
Q= Zle"l wy, then the pdf of Q is given by

MLy

QmML,,,—l —mQ
T(mML,) c

fo(©) = Q>0,m>05.

i ©)
Let 0, = min{d;,! € n}, and note that ), djw; > 0, .
Since erfc(y/z)e* is a monotonically decreasing function for
x > 0, then the PEP can be upper bounded as

L,

o 1 mM
P(S—8) <3 11;[1 (Hdl/m) : (10)
where
J— mmMLy, /00 ofe (M) QmMLn_leQ(ém_m)dQ.
I'(mML,) J,

QY
In the following, the integral in (11) is simplified using two
approaches resulting in two upper bounds on the PEP.

A. Bound 1

Using Eq. (6.286) of [9],

evaluated as
mML"F(mML +0.5)

~ /AmML,T(mML,)5 "

the integral in (11) can be

X oF (mML,], mMLy + 0.5 mML, +1;1 — 52) (12)

where oF; (., .;.;.) is the Gaussian confluent hypergeometric
function [9]. Defining x = 1 — 5= and using the relation
o Fi (e, B57;2) = (1=2)"% o Fi (o, y—B;7; 2/ (2 — 1)) results
in

 mm™MEaT(mML, + 0.5)
VAT (ML, + 1)65 M

(1 _ x)fm]WL,,

X oF (mMLn, 0.5;mML, + 1; %) (13)
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Fig. 1. BEP of a convolutionally coded MRC in Nakagami fading with
m = 2 and different number of diversity branches.

Using the relation o F) (o, y — 8;7;2) = az"*B,(a,y — )
and substituting (13) in (10), the PEP can be simplified to

PS — §) < LmMLy+05) e,

S/ B s -1 mM L,
= 27T (mML,) (z-1)

(14)

L,
B ML,,0.5)
X z/(x— 1) m n l[ll 1+dl/m mM ’

where B,(.,.) is the incomplete Beta function [9]. Using the
transfer function of the code, the BEP is upper bounded by

p < LLOWMLy +05)

mM L, (.’E
k 2y/al(mML,)

_ 1)mML1,

aT(D, )

X Bx/(x_l)(mMLn,O.E)) ol

I:l,D:(1+%)*mM’

15)
where T'(D,I) is the transfer function of the code. Here,
at each transition in the code trellis, the exponent of D
represents the distance between the symbol label of the
trellis transition and the symbol corresponding to the all-zero
sequence, whereas the exponent of I represents the weight
of the corresponding information sequence. Note that the
underscored terms in (15) represent the tightening constant
of Bound 1, i.e., the term K. of (2).

B. Bound 2

Making the change of variable £ = Q(m — ¢,,) and using
the integral form of the Q(.) function [10], the integral in (11)
can be written for integer Nakagami parameter, m as

I = gt | <\[/ - qZ/Qd)

} gmMLy—1,¢
(mML, —1)!

dg, (16)
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Fig. 2. BEP of 8PSK TCM coded MRC in Nakagami fading with m = 4
and different number of diversity branches.

where v = m5_7m6m_ Changing the order of integration and using

the properties of the number of arrivals in a Poisson random
process as in [5], (16) simplifies to

V2

— - —72/2
T = R )y ¢

r=mM L,

which can be evaluated as

J VOm/m i 1—6m/m\" [2r '
(1 — 8y /m)™MLn 4 r
r=mM L,
(18)
Following [5] and substituting (18) in (10), the PEP becomes
—mML, Ly
P(S —§) < 4 <2mMLn)H 1 .
2/0pm/m \ mM Ly i (L+di/m)

19)
Using the transfer function of the code, the BEP is upper
bounded by
P < 1 4=mMLy (9mML,\ 0T (D,I)
"=k 23/6/m \ mML, al

I1=1,D=(142)-mm

(20)
Note that the underscored term in (20) is the tightening
constant of Bound 2, i.e., the term K. of (2).

IV. NUMERICAL RESULTS

For illustration, the proposed union bounds were evaluated
for a rate-1/2 (5,7) convolutionally coded BPSK and the 8-state
8PSK TCM designed in [8]. Figure 1 shows the performance
of the convolutional code versus the SNR per information
bit Ep/Np in dB, where Es = R.E;. The performance of
8PSK TCM is shown in Figure 2. We observe that the new
bounds are tight to simulation results for a wide range of SNR,
diversity orders and Nakagami parameters.

V. CONCLUSIONS

Union bounds on the BEP of coherent coded MRC systems
over Nakagami-m fading channel were derived. Results show
that the bounds are tight to simulation results. Furthermore,
proposed bounds are expressed in closed-forms that are simple
to evaluate, unlike existing bounds which need numerical
integration to be evaluated. Results show that the bounds are
general to any coded system with a known transfer function
over Nakagami-m fading with a general Nakagami parameter.
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