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الخلاصــة

تعتبر القنوات ذات الذاكرة من أكثر القنوات شيوعا في أجهزة الاتصالات اللاسلكية. تُـقدم هذ� الورقة تحليل أداء نُـظم 
اعادة الارسال الأوتوماتيكية المعتمدة على الاعادة الاختيارية في القنوات اللاسلكية ذات الذاكرة. لقد تم تحليل أداء نظم 
اعادة الارسال الأوتوماتيكية المستخدمة لهوائى واحد أو عدة هوائيات لعدد من معدلات الارسال المبنية على تعديل تردد أو 
مرحلة الموجة اللاسلكية.  لقد تم حساب التحليل الجديد لعدد من النظم مع دراسة تأثير طول الذاكرة ومدى علاقة هوائيات 

المرسل مع بعضها البعض على الأداء العام. تدل التجارب أن التحليل الجديد دقيق جدا في معظم الأحوال المختلفة.
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ABSTRACT

Block fading is a popular channel model that approximates the behavior of different wireless 
communication systems. Automatic-repeat request (ARQ) protocols are used to provide reliable 
communication in wireless networks. In this paper the throughput of the basic selective-repeat (SR) 
ARQ in block fading environments is derived. Single-antenna ARQ systems employing both coherent 
BPSK and QPSK and noncoherent orthogonal BFSK are analyzed over block fading channels 
characterized by Rician and Nakagami fading distributions. Moreover, the performance of multi-input 
multi-output (MIMO) ARQ systems employing space-time block codes (STBCs) is derived. The effect 
of antenna correlation in MIMO ARQ systems is investigated analytically. Results show that longer 
block lengths improve the performance of basic ARQ protocols. Furthermore, the throughput gain 
obtained by increasing the block length is a decreasing function of the block length. As the fading 
severity of the channel increases, the performance improvement resulting from increasing the block 
length increases.
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THROUGHPUT OF ARQ PROTOCOLS OVER RICIAN, NAKAGAMI AND MIMO
BLOCK FADING CHANNELS

1. INTRODUCTION

A serious challenge to have good communication quality in wireless networks is the time-varying multipath
fading environments, which causes the received signal-to-noise ratio (SNR) to vary randomly. The fading distri-
bution varies according to the environment. For example, if a line-of-sight exists between the transmitter and
the receiver, the fading process is modeled by a Rician distribution [1]. Another popular model for the fading
process is the Nakagami distribution [2], which provides a family of distributions that fit measurements under
different propagation environments [3].

Error-free communication is often accomplished using ARQ techniques. Basic ARQ protocols are based on
error detection and retransmission [4]. If a received packet is detected with error at the receiver, a retransmission
of the same packet is initiated through a feedback channel [4]. The performance of an ARQ protocol is charac-
terized by its throughput, which is defined as the ratio of the average number of packets accepted as error-free
by the receiver to the total number of transmitted packets [5]. The throughput of “selective repeat” (SR) ARQ
is known to be the highest among the basic ARQ protocols [4]. In SR ARQ the sender retransmits only the
negatively acknowledged packets.

The throughput of an ARQ protocol is a function of the fading statistics affecting transmitted packets.
In practice, channel models that exhibit memory are often used to model wireless systems. Of a particular
interest, the block fading channel [6] provides an acceptable model for many wireless communication systems
such as frequency-hopped spread-spectrum (FH-SS) and time-division multiple access (TDMA). In this model,
a packet consists of blocks of symbols that undergo independent fading realizations, where the fading coefficient
stays constant for symbols within each block.

Most research efforts have concentrated on the analysis of hybrid ARQ protocols where channel coding is
used [4, 5, 7]. Particularly, in [7] the throughput of basic ARQ protocols over slow Rayleigh fading was derived.
However, basic ARQ protocols are used to ensure correct delivery of data packets in many systems such as
Bluetooth. In some packet formats used in Bluetooth, uncoded data is transmitted without using any channel
coding [8]. Thus it is of interest to analyze the throughput of uncoded transmission (i.e., basic ARQ) in wireless
networks. In this paper, we analyze the throughput of basic SR ARQ in block fading environments with Rician
and Nakagami fading distributions. Moreover, multiple-antenna ARQ systems employing space-time block codes
(STBCs) [9] are considered. Furthermore, the effect of antenna correlation on the performance of SR ARQ is
studied analytically.

The outline of the paper is as follows. The SR ARQ system model is described in the next section. In Section 3,
the throughput of basic SR ARQ employing single and multiple antennas is derived for different fading statistics,
and results are discussed therein. Conclusions are presented in Section 4.

2. SYSTEM MODEL

2.1. Single-Antenna System

In the basic SR ARQ, the sender retransmits the packet if it contains some errors. The process is repeated
until the packet is successfully received [4]. A packet is composed of kN bits, where each k bits are mapped onto
one symbol of an M -ary signal constellation. Thus each packet contains N symbols. In this paper we consider
coherent BPSK and QPSK and noncoherent orthogonal BFSK. The channel affecting each packet is a block
fading. In this model each packet undergoes F independent fading realizations, where each block of m = �N

F �
symbols are affected by the same fading realization.
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In coherent receivers the channel phase and amplitude are available, and the matched filter sampled output
at time l in the f th fading block is given by

yf, l =
√

Eshfsf, l + zf, l , (2.1)

where sf, l is the transmitted signal and zf, l is a noise modeled as an AWGN with a CN (0, N0) distribution.
Note that Es represents the average received signal energy, which is equal to the average transmitted signal
energy multiplied with an attenuation coefficient that depends on the distance between the transmitter and the
receiver. Here, only propagation loss due to distance is assumed with no shadowing effects. The coefficient
hf is the channel gain in fading block f given by hf = af exp(jθf ), where θf is uniformly distributed phase
and af is the amplitude. In this paper, we assume that af has either a Rician or a Nakagami distribution.
The coherent receiver chooses the signal s that maximizes the metric Re{y∗

f, ls}, where Re{.} represents the real
part of a complex number.

In a noncoherent BFSK receiver, a square-law combining [10] is employed, whose outputs are represented by

r
(I,c)
f, l =

√
Esafδ(cf, l, c) cos(θf ) + η

(I,c)
f, l

r
(Q,c)
f, l =

√
Esafδ(cf, l, c) sin(θf ) + η

(Q,c)
f, l , (2.2)

where r
(I,c)
f, l and r

(Q,c)
f, l are defined respectively as the correlation of the received signal with the inphase and

quadrature dimensions of the signal corresponding to the bit c = 0, 1. In (2.2), δ(x, y) = 1 if x = y and
δ(x, y) = 0 otherwise; and η

(I,0)
f, l , η

(Q,0)
f, l η

(I,1)
f, l and η

(Q,1)
f, l are independent random variables with a N (0, N0

2 )

distribution. The receiver chooses the bit c with the maximum |r(I,c)
f, l |2 + |r(Q,c)

f, l |2.

2.2. MIMO System

In transmitters employing STBCs [9], every nt BBSK (or QPSK) signals are mapped into a nt×nt transmission
matrix G. For nt = 2 the transmission matrix is

G =

⎛
⎜⎜⎝ s1 s2

−s∗2 s∗1

⎞
⎟⎟⎠ , (2.3)

where (.)∗ denotes the complex conjugate operation. For nt = 2, antennas 1 and 2 transmit the signals s1,−s∗2
and s2, s

∗
1, respectively during 2T seconds. In general, the ith column of G is transmitted over the ith transmit

antenna during a time slot, which is nt times the symbol duration. The resulting STBC has a full rate, i.e., one
symbol is transmitted every T seconds. More examples of complex orthogonal matrices were presented in [11]
for different values of nt. Note that orthogonal matrices for STBCs do not exist for all the values of nt.

Let Gf, l be the transmission matrix in the lth time slot of fading block f , the corresponding received vector
is given by

yf, l =
√

EsGf, lhf + zf, l , (2.4)

where zf, l is a length-nt column random vector with a distribution CN (0, N0I) and I denotes the nt×nt identity
matrix. The vector hf is the channel gain in fading block f and is modeled as CN (0,Ch), where Ch is the
nt × nt covariance matrix of the channel. In order to enable simple detection, the fading process should remain
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constant for at least one time slot, i.e., ntT seconds. This constrains the block length to be a multiple of nt.
A simple receiver for STBC was proposed in [9], whose outputs for nt = 2 have the form

s̃1 = (|h1|2 + |h2|2)y1 + z̃1

s̃2 = (|h1|2 + |h2|2)y2 + z̃2, (2.5)

which makes a nt-branch STBC equivalent to a nt-branch maximal-ratio combiner (MRC), where z̃1 and z̃2 are
the noise samples at the output of the detector. Note that the rows of G should be orthogonal [9]. This detector
was generalized for larger values of nt in [11].

3. PERFORMANCE ANALYSIS

The performance of an ARQ protocol is characterized by its throughput η, which is defined as the ratio of
the average number of packets accepted as error-free by the receiver to the total number of transmitted packets
[5]. It is assumed that the probability of undetected errors is negligible. Under the assumptions of infinite buffer
size at the receiver and noiseless feedback channel, the throughput of SR ARQ protocols [4] is given by

η = 1 − Pp , (3.1)

where Pp is the probability of packet error, which is a function of the fading process affecting a packet.

Under the block fading model a packet of length N symbols undergoes F independent fading realizations,
where m = �N

F � symbols is the size of each fading block, which represents the block length. The packet error
probability conditioned on the fading channel gains H = {hf}F

f=1 is the probability that at least one fading
block is in error, i.e.,

Pp|H = 1 −
F∏

f=1

(1 − PB|hf
), (3.2)

where PB|hf
is the probability that the f th fading block is in error conditioned on the fading gains hf . It is the

probability that at least one symbol in the fading block is in error, i.e.,

PB|hf
= 1 − (1 − Ps|hf

)m, (3.3)

where Ps|hf
is the conditional symbol error probability, which is a function of the modulation scheme and the

receiver employed. Let γf = a2
fγs denote the received SNR value for a symbol in the f th fading block, where

γs = Es

N0
is the average SNR. Substituting (3.3) in (3.2), the conditional packet error probability becomes

Pp|Γ = 1 −
F∏

f=1

(1 − Ps|γf
)m, (3.4)

where Γ = {γf}F
f=1. The unconditional packet error probability is obtained by averaging (3.4) over the probability

density function (pdf) of the fading statistics Γ. Since the fading gains affecting different fading blocks are
independent, the unconditional packet error probability becomes

Pp = 1 −
F∏

f=1

Eγf

[
(1 − Ps|γf

)m
]
. (3.5)
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Since all fading blocks are affected by identical fading processes, that will be denoted with γ, the packet error
probability is

Pp = 1 − {
Eγ

[
(1 − Ps|γ)m

]}F
. (3.6)

Using the binomial expansion

Eγ

[
(1 − Ps|γ)m

]
=

m∑
i=0

(−1)i

(
m

i

)
Eγ [P i

s|γ ], (3.7)

where we have used the linearity of the expectation operation. Substituting (3.7) in (3.6), the packet error
probability becomes

Pp = 1 −
{

m∑
i=0

(−1)i

(
m

i

)
Eγ

[
P i

s|γ
]}F

. (3.8)

Let Psi = Eγ [P i
s|γ ] and using multi-nomial expansion to simplify (3.8) yields

Pp = 1 −
∑

j0,j1,...,jm∈J

F !
j0!j1! . . . jm!

m∏
i=0

(−1)iji

(
m

ji

)ji

P ji

si , (3.9)

where J = {j0, j1, . . . , jm : j0+j1+. . .+jm = F}. The throughput of SR ARQ is obtained by substituting (3.9) in
(3.1) and computing (3.9) for the modulation scheme and the channel model under study. The expression in (3.9)
can be simplified for modulation schemes with a conditional symbol error probability given by an exponential
function such as noncoherent orthogonal BFSK, whose conditional bit error probability is given by

Ps|γf
=

1
2
e−

1
2 γf . (3.10)

On the other hand, (3.9) is hard to be evaluated in a closed-form for coherent BPSK and QPSK, whose conditional
symbol error probability is given by

Ps|γf
= Q

(√
2γf

)
. (3.11)

Therefore, numerical integration is used to evaluate (3.9) using (3.11) and averaging over the fading statistics.

3.1. Rician Channels

If a line-of-sight exists between the transmitter and the receiver, the amplitude of the channel is modeled
as a Rician random variable [1]. In this model the received signal consists of the specular and diffuse signal
components. The specular component is due to the line-of-sight reception and the diffuse component results
from multipath reception. In this case, the channel gain in each fading block hf is modeled as a complex
Gaussian variable with CN (b, 1), where b represents the specular (line-of-sight) component of the channel.
The SNR pdf of a Rician fading channel [12] is given by

fγ(γ) =
(1 + K)

γs
exp

[
−K − (1 + K)γ

γs

]
I0

(
2

√
K(1 + K)γ

γs

)
, γ ≥ 0, (3.12)
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where K = b2 is the energy of the specular component, I0(.) is the zero-order modified Bessel function of the first
kind. In this context, K denotes the ratio of the specular component energy to the diffuse component energy.
If K = 0 we get the Rayleigh distribution, whereas the channel approaches the no fading case (AWGN channel)
as K increases. Averaging (3.10) over the channel statistics in (3.12) the symbol error probability becomes

Psi =
1
2

1 + K

1 + K + iγs/2
. exp

(
iKγs/2

1 + K + iγs/2

)
. (3.13)

The throughput of SR ARQ employing noncoherent orthogonal BFSK over Rician block fading channels is found
by substituting (3.13) in (3.9) and (3.1). The throughput of SR ARQ employing BPSK or QPSK is computed
using numerical integration.

Throughout the paper, the results were generated for SR ARQ with a packet length of N = 1024. Figure 1
shows the throughput of the SR ARQ employing orthogonal BFSK over Rician block fading channels with K = 0,
i.e., Rayleigh fading. We observe that the throughput improves with longer block because the probability of a
packet error is lower. This is because a packet is considered in error if it includes at least one symbol error.
Shorter blocks result in larger number of independent fading realizations affecting a packet, which increases the
probability that a symbol falls in a deep fade. Hence, the probability of error increases with shorter block lengths
and therefore the throughput degrades. Also, every double in the block length results in a 2 dB gain in the SNR.

In Figure 2, the throughput of SR ARQ achieved at SNR of 15 dB is shown for BPSK and noncoherent
orthogonal BFSK over different Rician channels. We observe that for the same operating SNR value, the
throughput improves significantly in the short block range and a little improvement is achieved in the long
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Figure 1. Throughput of SR ARQ system employing noncoherent orthogonal BFSK over Rayleigh block fading channels

with a block length m and a packet length of N = 1024.
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Figure 2. Throughput of SR ARQ systems employing coherent BPSK and noncoherent orthogonal BFSK over Rician

block fading channels at γs = 15 dB versus the block length m for a packet length of N = 1024.

block range. For a Rician channel with K = 10 dB, little throughput improvement is achieved by having
block lengths greater than 100 symbols. As the specular component of the channel becomes weaker (smaller K

values), the block length, above which a little performance improvement is achieved, becomes larger. Moreover,
the throughput gain due to longer block decreases as K increases. This is because larger specular component
reduces the multipath component, which reduces the effect of longer block on improving the performance.

3.2. Nakagami Channels

Nakagami distribution was shown to fit a large variety of channel measurements [3]. Under Nakagami distri-
bution, the pdf of the received SNR [2] is given by

fγ(γ) =
(

M

Ω

)M
γM−1

Γ(M)
exp

(
−Mγ

Ω

)
, γ > 0,M > 0.5, (3.14)

where Γ(.) is the Gamma function and M = Ω2

Var[
√

γ] is the Nakagami parameter that indicates the fading
severity. As M increases, the fading becomes less severe and approaches the AWGN channel when M → ∞.
The Nakagami distribution covers a wide range of fading scenarios including Rayleigh fading when M = 1.
Note that the Nakagami and Rician distributions are related [12] through the relation between the Rician
K-factor and the Nakagami parameter that is given by

M =
(K + 1)2

2K + 1
. (3.15)
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The bit error probability for noncoherent orthogonal BFSK over Nakagami fading is found by averaging (3.10)
over the statistics in (3.14) resulting in

Psi =
1
2

(
1

1 + iγs/2M

)M

. (3.16)

Substituting (3.16) in (3.9) and (3.1) yields the throughput of SR ARQ employing orthogonal BFSK over
Nakagami block fading channels.

Figure 3 shows the throughput of SR ARQ employing orthogonal BFSK over Nakagami block fading channels
with M = 2. Comparing with Figure 1, which is the Rayleigh case (M = 1), we observe that the SNR gain due
to longer block decreases as M increases, i.e., as the channel becomes less random. The same observations noted
in the Rician case apply here. In Figure 4 the throughput of SR ARQ achieved at SNR of 15 dB is shown for
BPSK and noncoherent orthogonal BFSK with different Nakagami parameters. As in the Rician case, for the
same operating SNR, the throughput improves significantly in the short block range and a little improvement is
achieved in the long block range. Moreover, as the channel becomes less random (larger M values), the block
length above which a little performance improvement is achieved becomes smaller.
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Figure 3. Throughput of SR ARQ system employing noncoherent orthogonal BFSK over Nakagami block fading channels

with fading parameter M = 2 and a packet length of N = 1024.
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Figure 4. Throughput of SR ARQ systems employing coherent BPSK and noncoherent orthogonal BFSK modulation

schemes over Nakagami block fading channels at γs = 15 dB versus the block length m for a packet length of N = 1024.

3.3. MIMO Channels

In the following the throughput of SR ARQ is derived for MIMO channels with one receive antenna. Note
that the presented results can be easily extended to multiple receive antennas. In addition, the results apply
for full-rate orthogonal STBCs, where they can be easily extended to the general case by taking into account
the reduction in the SNR due to the reduction in the STBC rate. The conditional symbol error probability
corresponding to the decision variables in (2.5) is given by

Ps|h = Q

⎛
⎝

√√√√2γs

nt∑
i=1

|hi|2
⎞
⎠ . (3.17)

In the MIMO case we assume that the channel amplitude |hi| is Rayleigh distributed. If the fading pro-
cesses from different transmit antennas are uncorrelated, then the variable q = γs

∑nt

i=1 |hi|2 has a Chi-square
distribution with 2nt degrees of freedom [13] given by

fq(q) =
1

(nt − 1)!
qnt−1

Ωnt
q

e−q/Ωq , q > 0, (3.18)

where Ωq = E[q] = ntγs.

When antennas are placed relatively close to each other, the fading processes from different transmit antennas
will be correlated [14, 15]. In this case, the channel vector, hf in (2.4) is a correlated complex Gaussian
random vector with a covariance matrix Ch whose (i, j)th element is E[h∗

i hj ] = ρij , where ρij is the correlation



Salam A. Zummo

The Arabian Journal for Science and Engineering, Volume 31, Number 2B. October 200610

coefficient between channels from the ith and jth transmit antennas. Note that E[h∗
i hi] = 1. In order to

derive the unconditional error probability from (3.17), we need to average over the pdf of the inner product
h∗h =

∑nt

i=1 |hi|2 is needed, which is difficult to perform.

Recall the eigenvalue decomposition of the covariance matrix Ch = UΛUT , where Λ is a diagonal matrix
containing the eigenvalues of Ch, i.e., Λ = diag{λ1, λ2, . . . , λnt

}, and U is a unitary matrix that contains the
eigenvectors of Ch in its rows. Thus an uncorrelated Gaussian random vector g with a covariance matrix Cg = Λ
is generated by applying the linear transformation g = UT h, and the conditional symbol error probability
becomes

Ps|h = Q

⎛
⎝

√√√√2γs

nt∑
i=1

λi|gi|2
⎞
⎠ . (3.19)

Let q = γs

∑nt

i=1 λi|gi|2 and assume distinct eigenvalues {λi}nt
i=1, the pdf of q is found using the inverse Fourier

transform [16] to be

fq(q) =
nt∑

i=1

∏
j �=i

1
λi − λj

e−q/(λiΩq), q > 0. (3.20)

Substituting (3.18) or (3.20) in (3.9) with γ is replaced by q results in the packet error probability of STBC
over Rayleigh block fading channels with uncorrelated and correlated transmit branches, respectively. The
throughput follows directly from substituting (3.9) in (3.1). Since the conditional symbol error probability is
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Figure 5. Throughput of SR ARQ systems employing BPSK modulated STBC with nt = 2 over Rayleigh block fading

channels for a packet length of N = 1024.
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given by the Q-function, numerical integration is used to compute (3.9). Figure 5 shows the throughput of
the SR ARQ employing STBC with BPSK and two transmit antennas over Rayleigh block fading channels.
Note that the throughput of STBC employing QPSK is double that of the BPSK system.

3.4. Comparisons

In Figure 6 the throughput of SR ARQ achieved at SNR of 15 dB is shown for noncoherent orthogonal BFSK
and BPSK with single and two transmit antennas. We observe that the SNR gain due to longer block decreases
with increasing the number of transmit antennas. This is because having more antennas reduces the probability
of packet error, which improves the throughput. As the order of space diversity increases, the block length above
which a little performance improvement is achieved becomes larger. The figure also shows the effect of antenna
correlation on the throughput. We observe that a correlation coefficient of 0.7 results in small degradation in
the performance and a significant SNR gain compared to the single-antenna scenario.
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Figure 6. Throughput of SR ARQ systems employing different modulation schemes over Rayleigh block fading channels

at γs = 15 dB versus the block length m for a packet length of N = 1024.

4. CONCLUSIONS

In this paper we derived the throughput of the SR ARQ over block fading channels with Rician and Nakagami
distributions and MIMO systems. It was found that longer block improves the performance of basic SR ARQ.
Furthermore, the throughput improvement obtained in basic ARQ decreases with increasing the block length.
The performance improvement gained by increasing the block increases as the fading becomes more severe
(random). Results shows that space diversity reduces the need for long block used in single-antenna systems to
improve the performance. Moreover, a little degradation in the performance is observed when a correlation of
0.7 exists between the transmit antenna in a STBC system.
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