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Error Probability of Coded STBC Systems in Block Fading Environments
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Abstract— In this letter, a union bound on the error probability
of coded multi-antenna systems over block fading channels is
derived. The bound is based on uniform interleaving of the coded
sequence prior to transmission over the channel. Using this argu-
ment the distribution of error bits over the fading blocks is com-
puted and the corresponding pairwise error probability (PEP) is
derived. We consider coded systems that concatenate a binary
code with a space-time block code (STBC). Coherent detection
is assumed with perfect and imperfect channel state information
(CSI) at the receiver, where imperfect CSI is obtained using
pilot-aided estimation. Under channel estimation environments,
the tradeoff between channel diversity and channel estimation is
investigated and the optimal channel memory is approximated
analytically. Results show that the performance degradation due
to channel memory decreases as the number of transmit antennas
is increased. Moreover, the optimal channel memory increases
with increasing the number of transmit antennas.

Index Terms— Convolutional, union bound, block fading, block
interference, channel estimation, space-time block codes, multi-
antenna, MIMO.

I. INTRODUCTION

THE USE OF error correction coding is among standard
approaches to mitigate multipath fading by providing the

receiver with channel diversity. Channel diversity is defined
roughly as the number of independent fading realizations
available at the receiver to decode a codeword. The per-
formance of binary codes over infinitely interleaved fading
channels is commonly analyzed using the union bound as
in [1], [2]. However, the channel in many wireless systems,
such as frequency-hopped spread-spectrum (FH-SS), time-
division multiple access (TDMA) and orthogonal frequency
division multiplexing (OFDM), can be modeled as a block
fading channel [3]. In this model, a frame undergoes several
independent fading realizations, each affecting a group of m
bits.

Another approach to diversity is to use multiple antennas at
the transmitter or receiver [4], [5]. Space-time block coding
(STBC) was proposed by Alamouti [6] to provide diversity at
the transmitter. This idea was soon generalized by Tarokh et
al. [7] to a general number of transmit antennas. In cellular
systems base stations are frequently equipped with multiple
antennas to provide receive diversity in the uplink. Since
installing multiple antennas in mobile units is difficult due
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to size limitations, the antennas at the base station can be
used along with a STBC to provide transmit diversity in the
downlink. Thus it is of interest to analyze the performance
of coded STBC in wireless systems that can be modeled as a
block fading channel.

In practice the receiver has to estimate the channel state
information (CSI). If the frame size is infinite, long channel
memory permits better channel estimation. However, if the
frame size is finite, there exists a fundamental tradeoff between
the channel diversity and channel estimation [8], [9]. It is well
known [10] that channel estimation becomes more crucial
to the performance of ST codes as the number of transmit
antennas increases. In this letter, we derive a union bound on
the probability of error for coded STBC systems over block
fading channels with perfect and imperfect CSI at the receiver.
The union bound is used to investigate the tradeoff between
channel diversity and estimation. Furthermore, the optimal
channel memory is approximated and the effect of the space
diversity on the optimal channel memory is investigated.

The letter is organized as follows. The system model is
described in Section II. Then, the error probability of coded
STBCs over block fading channels is derived in Section III.
In Section IV, the pairwise error probability (PEP) is derived
for the cases of coherent receivers with perfect and imperfect
CSI at the receiver. Conclusions are discussed in Section VI.

II. SYSTEM MODEL

The transmitter in a coded STBC system consists of a
binary encoder (e.g., convolutional or turbo), an interleaver, a
modulator and a STBC. In a frame duration of NT seconds, a
rate-Rc encoder maps K information bits into N coded bits,
where Rc = K

N . Here, T represents the bit duration. Then, the
coded bits are interleaved and the ith bit ci is modulated to
a signal si ∈ {±1} using BPSK (si = (−1)ci). The frame is
transmitted over a block fading channel with F blocks, where
each fading block of m = �NF � bits undergoes the same fading
realization that is independent of the other fading blocks. This
is a reasonable assumption if the channel coherence time is
longer than the duration of each fading block [11]. Note that
the interleaver is used to spread out burst errors in the decoder.

The transmitter is equipped with nt transmit antennas and
there is a single receive antenna. Note that the results of
this letter are easily generalized to multiple receive antennas.
After encoding and interleaving, each group of nt signals are
mapped into a nt×nt transmission matrix G. For the case of
nt = 2, G is the Alamouti code [6] given by

G =
(
s0 s1
−s∗1 s∗0

)
. (1)

The transmission of G takes place in a time slot of duration
ntT seconds, where the ith row of G is transmitted over the
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nt transmit antennas in the ith time interval of the time slot.
More examples of real and complex orthogonal matrices were
presented in [7]. In this letter we limit our discussion to binary
coded STBC systems such as BPSK. This is because the
proposed union bound becomes very complicated and difficult
to compute for complex signal constellations.

To be able to detect STBCs, the fading process from each
transmit antenna should remain constant for at least one time
slot, i.e., ntT seconds. Let Gf,l be the transmission matrix in
the lth time slot of fading block f . The corresponding received
vector is

yf,l =
√
EsGf,lhf + zf,l, (2)

where zf,l is a length-nt column random vector with a distri-
bution CN (0, N0I) and I denotes the nt×nt identity matrix.
The vector hf contains the channel gains from the transmit
antennas in fading block f and is modeled as CN (0, I). The
decoder chooses the codeword S = {sf,l} that maximizes the
metric

m(Y,S) =
F∑
f=1

m/nt∑
l=1

Re{y∗
f,lGf,lhf}, (3)

where (.)∗ denotes the complex conjugate of a complex vector
and Y = {yf,l}. The union bound for block fading channels
is discussed below.

III. THE UNION BOUND

Throughout the letter, the subscripts c, u and b are used to
denote conditional, unconditional and bit error probabilities,
respectively. The bit error probability for a convolutional code
is upper bounded [12] by

Pb ≤
N∑

d=dmin

wd Pu(d), (4)

where dmin is the minimum Hamming distance of the convo-
lutional code and wd is the number of codewords with output
weight d. Here, Pu(d) is the unconditional PEP defined as
the probability of decoding a received sequence as a weight-d
codeword given that the all-zero codeword is transmitted.

In block fading channels Pu(d) is a function of the distrib-
ution of the d nonzero error bits over the F fading blocks.
Denote the number of fading blocks with v nonzero bits
(weight v) by fv and define w = min(m, d). Due to the
uniform interleaving of the coded bits prior to the transmission
over the channel, the d nonzero bits are distributed according
to the pattern f = {fv}wv=0 that satisfies the constraints
F =

∑w
v=0 fvandd =

∑w
v=1 vfv . Denote by L = F − f0 the

number of fading blocks with nonzero weights, then Pu(d) is
given by

Pu(d) =
d∑

L=�d/m�

L1∑
f1=0

L2∑
f2=0

. . .

Lw∑
fw=0

Pu(d|f)pd(f), (5)

where Pu(d|f) is the unconditional PEP given a specific block
fading pattern f , which occurs with a probability given by

pd(f) =

(
m
1

)f1(m
2

)f2
. . .
(
m
w

)fw(
mF
d

) .
F !

f0!f1! . . . fw!
. (6)

where

Lv = min

{
L−

v−1∑
r=1

fr,
d−∑v−1

r=1 rfr
v

}
, 1 ≤ v ≤ w.

(7)
The bit error probability of convolutional codes over a block
fading channel is upper bounded by substituting (5)-(7) in (4).
It should be noted that carefully designed interleavers may
outperform the uniform interleaver. However, analyzing the
performance of a specific interleaver is much more difficult.
In addition, the number of summations involved in computing
Pu(d) in (5) increases as the channel memory length increases.
Thus a good approximation to the union bound is obtained by
truncating (4) to a distance dmax < N . However, it should be
noted that the low-weight terms in the union bound dominate
the performance at high SNR values. Therefore, truncating
the bound does not affect its accuracy especially at high SNR
where simulation results are difficult to obtain.

IV. PAIRWISE ERROR PROBABILITY (PEP)

The PEP, Pu(d|f) is found by averaging the conditional PEP
over the fading statistics, where the conditional PEP is given
by

Pc(d|f) = Pr
(
m(Y,S, )−m(Y, Ŝ) < 0

∣∣H,S, f) , (8)

where H = {hf}Ff=1 and Ŝ is a weight-d codeword. Sub-
stituting the decoding metric (3) in (8) and averaging over
the fading statistics yields Pu(d|f). This is discussed in the
following for the cases of perfect and imperfect CSI.

A. Perfect CSI

It was shown in [6] that a STBC with nt transmit antennas
and perfect CSI is equivalent to nt-order maximal-ratio com-
bining (MRC). Thus, the conditional PEP for a coded STBC
system with perfect CSI is given by

Pc(d|f) = Q

⎛
⎝
√√√√2Rcγb

w∑
v=1

v

fv∑
l=1

nt∑
i=1

|hil |2
⎞
⎠ . (9)

Using the integral form of the Q function, Q(x) =
1
π

∫ π
2

0 e(−x
2/2 sin2 θ)dθ [13], Pu(d|f) becomes

Pu(d|f) =
1
π

EH

[∫ π
2

0

exp

(
Rcγb

sin2 θ

w∑
v=1

v

fv∑
l=1

nt∑
i=1

|hil |2
)
dθ

]

=
1
π

∫ π
2

0

w∏
v=1

(
1

1 + vRcγb/ sin2 θ

)ntfv

dθ. (10)

B. Imperfect CSI

Imperfect CSI is obtained by transmitting nt known pilot
sequences {pi}nt

i=1, each of length np, over the transmit
antennas in each fading block [10], [14]. Denote by ypf the
received column vector corresponding to the pilot sequence in
fading block f . It is given by

ypf =
√
Ep

nt∑
i=1

hifp
i + zf , 1 ≤ f ≤ F, (11)
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where Ep is the pilot signal energy. If pilot sequences from
different transmit antennas are orthogonal, i.e., pi∗.pj = 0
when i �= j, then the maximum likelihood (ML) estimator of
hif is given by

ĥif =
ypf .p

i∗

‖ pi ‖2 −
zf .pi∗

‖ pi ‖2 = hif + eif , (12)

where eif =
(
zf .pi∗/ ‖ pi ‖2) is the estimation error with

a CN (0, σ2
e) distribution where σ2

e = N0
npEp

. In order imple-
ment a ML sequence decoding rule, the likelihood function
p(Y, Ĥ|S) should be maximized, which was shown in [15] to
be difficult to implement in a Viterbi-like receiver. Therefore,
a suboptimal receiver that maximizes the likelihood function
p(Y|Ĥ,S) is used. This suboptimal receiver chooses the
codeword S that maximizes the metric in (3) with hf being
replaced by ĥf . The received signal vector yf,l conditioned
on the estimated channel gains is a complex Gaussian random
vector with a mean μ

σ

√
EsGf,lĥf and a covariance matrix

(N0 + ntEs(1 − μ2))I, where μ = 1√
1+σ2

e

. Thus the PEP

conditioned on the estimated fading gains is given by

Pc(d|f) = Pr

⎛
⎝ L∑
f=1

w∑
l=1

κf,l < 0
∣∣∣Ĥ,S

⎞
⎠ , (13)

where κf,l is a Gaussian random variable with mean and
variance given respectively by

E
[
κf,l
∣∣Gf,l, ĥf] =

μ

σ

√
EsRe

{
ĥ∗
f,lETf,lEf,lĥf

}

=
μ

σ

√
Esdf,l

nt∑
i=1

|ĥif |2, (14)

Var
[
κf,l
∣∣Gf,l, ĥf] =

(
N0 + ntEs(1 − μ2)

)
df,l

nt∑
i=1

|ĥif |2,
(15)

where σ2 = Var(ĥif ) = 1 + σ2
e . It can be shown [15] that

the PEP conditioned on the estimated fading gains is given
by (9), with γ̂b = μ2γb

1+ntRcγb(1−μ2) replacing γb. Here, γ̂b
represents the effective SNR taking into account the additional
noise in the channel estimation. Thus the unconditional error
probability is found by averaging (13) over the estimated
fading gains, resulting in (10) with γb being replaced by γ̂b.

Two scenarios are considered for channel estimation using
pilot signals with Ep = Es. The first one results from only
pilot estimation (OPE) with an estimation error variance of
σ2
e = N0

Es
. The second case considers a lower bound on the

performance of receivers employing iterative joint decoding
and channel estimation [16], [17], [18]. In this case the
correctly decoded bits can be considered as pilot signals
resulting in σ2

e = N0
mEs

. This case is referred to as correct
data estimation (CDE).

In systems using pilot-aided channel estimation, nt coded
bits are punctured every m coded bits and replaced by a
pilot sequence of length nt. This reduces the error correcting
capability of the code as the channel memory length becomes
shorter which degrades the performance. This is in addition to
energy reduction due to pilot signal insertion. The code rate of
the punctured codes is given by R̃c = mRc

m−np
. If no puncturing
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Fig. 1. Bit error probability of a convolutionally coded STBC using nt =
2 with perfect CSI for channel memory lengths m = 2, 16, 32, 64, 128.
(dashed: simulations, solid: analysis).

was employed the system will be affected by the energy loss
only with the same error correcting capabilities of the code.

C. Correlated Transmit Antennas

When the fading channels from different transmit antennas
are correlated, hf is a correlated complex Gaussian random
vector with a covariance matrix Kh, whose (i, j)th element
is given by Kh(i, j) = ρij , i �= j, where ρij is the correlation
coefficient between channels from the ith and jth transmit
antennas. When perfect CSI is available at the receiver, the
conditional PEP is given by (9), which is a function of∑nt

i=1 |hif |2 = h∗
fhf . Averaging the conditional PEP over hf

is difficult due to the complicated form of the distribution of
hf . This problem is resolved by digonalizing hf [19] resulting
in an uncorrelated complex Gaussian random vector gf . The
conditional PEP becomes

Pc(d|f) = Q

⎛
⎝
√√√√2Rcγb

w∑
v=1

v

fv∑
l=1

nt∑
i=1

λi|gif |2
⎞
⎠ , (16)

where {λi}nt

i=1 are the eigenvalues of Kh. By averaging (16)
over gf we obtain

Pu(d|f) =
1
π

∫ π
2

0

w∏
v=1

nt∏
i=1

(
1

1 + vλiRcγb/ sin2 θ

)fv

dθ.

(17)
If the receiver has imperfect CSI and does not know

the channel covariance matrix [20], it estimates the channel
assuming uncorrelated transmit antennas as in Section IV-B. In
this case, the conditional PEP is given by (9) with hf replaced
by qf = 1

σ ĥf whose covariance matrix is given by

Kq =
1

1 + σ2
e

Kh +
σ2
e

1 + σ2
e

I, (18)

Let {λ̂i} be the eigenvalues of Kq. Then, Kq can be diago-
nalized as in [19]. In this case, the resulting PEP is given by
(17) with {λi} being replaced by {λ̂i}.
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Fig. 2. Analytical SNR required for a convolutionally coded STBC to achieve
Pb = 10−4 versus nt for channel memory lengths m = 16, 32, 64 and
different CSI assumptions.

V. NUMERICAL RESULTS

To illustrate the results, a rate- 1
2 (23,35) convolutional

code with 4 memory elements is concatenated with a STBC
employing two and four transmit antennas with a frame size
of N = 1024 coded bits. The union bound was truncated
to dmax ≤ 12. The bit error probability for the case of two
transmit antennas is shown in Figure 1, where it is clear that
the proposed approximation is tight to the simulation results.

Figure 2 shows the SNR required for different memory
lengths to achieve Pb = 10−4 is shown versus the number
of transmit antennas. We observe that as space diversity
increases, the SNR loss due to long channel memory reduces.
This is expected since increasing the space diversity reduces
the sensitivity of the performance to the diversity provided
by the independent fading blocks. In single-antenna systems
with CDE and OPE the memory length m = 32 performs
the best, whereas m = 32 and m = 64 provide the best
performance for the cases of nt = 2 and nt = 4, respectively.
Moreover, as the channel memory length increases the gain of
the CDE assumption over the OPE receiver increases because
channel estimation improves under the CDE assumption as
the memory length increases. Note that Ep = Es in the CDE
and OPE systems. It was shown in [15] that the optimal pilot
signal energy increases with increasing the channel memory
equally well for different number of transmit antennas.

The results for two transmit antennas with imperfect CSI
using the CDE assumption are shown in Figure 3. We observe
that memory length m = 8 performs the worst among
the other cases because the resulting code is weak due to
puncturing two coded bits every 8 coded bits. Also, the case
of m = 64 outperforms all other cases in the low SNR region,
whereas the case of m = 32 starts to improve and becomes
the best after an SNR value of 7 dB. We observe that the case
of m = 16 outperforms the m = 128 case at SNR values
larger than 7 dB, where the later starts to degrade due to the
lack of diversity. In Figure 4 the CDE results for the case
of four transmit antennas are shown. Although STBC with
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Fig. 3. Analytical approximation of bit error probability of a convolutionally
coded STBC using nt = 2 with imperfect CSI (CDE assumption with Ep =
Es) for channel memory lengths m = 8, 16, 32, 64, 128.

4 5 6 7 8 9 10 11 12
10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

E
b
/N

0
 (dB)

P
b

m=16 
m=32 
m=64 
m=128

Fig. 4. Analytical approximation of bit error probability of a convolutionally
coded STBC using nt = 4 with imperfect CSI (CDE assumption with Ep =
Es) for channel memory lengths m = 16, 32, 64, 128.

nt = 4 and complex signals results in reduced transmission
rate [7], we present this case with real signals to illustrate
how the tradeoff between channel diversity and estimation is
affected by the number transmit antennas. We observe that the
optimal channel memory is longer and lies between m = 64
and m = 128, with a cross over at around 7 dB.

We conclude that the optimal memory increases as the
number of transmit antennas increases for the following rea-
sons. First, a larger number of transmit antennas increases the
number of channels to be estimated, which requires longer
observation period. Second, more space diversity reduces
the effect of diversity provided by the independent fading
blocks in the channel making channel estimation more crucial.
Finally, the length of the pilot sequences increases as the
number of transmit antennas increases, which reduces the
energy efficiency and the error correcting capability of the
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system. If no puncturing was used for pilot signal insertion,
the performance of short memory lengths would improve. In
this case the optimal channel memory length is expected to be
shorter than the puncturing case. This case was considered in
[15] for stronger codes; namely turbo codes. It was shown that
the optimal memory length becomes shorter than the case of a
weak code. This is because the stronger code is less sensitive
to channel estimation errors, which favors its role over that of
channel estimation.

In Figure 5, we show a comparison of systems with channel
memory lengths m = 16 and m = 64 for the case of nt = 2.
We observe that the performance degradation due to channel
estimation reduces as the channel memory length increases.
Furthermore, this degradation increases with the number of
transmit antennas emphasizing channel estimation for larger
number of transmit antennas. Note that an iterative joint
decoding and channel estimation receiver has the potential to
reduce the loss caused by OPE resulting in a performance
close to that of the system under the CDE assumption.

Figure 6 shows the effect of antenna correlation for the
case of two transmit antennas. By comparing with Figure 3,
we observe that antenna correlation degrades the performance
of systems with long channel memory more than it does for
systems with short channel memory. This is because long
channel memory reduces the channel diversity provided by the
independent fading blocks causing space diversity to become
more crucial. Moreover, long channel memory results in a
better channel estimation, the task that becomes easier due to
antenna correlation.

It is worth noting that optimizing the channel memory is
often under the control of the system designer. As mentioned
in the introduction, the block fading model is used frequently
to model communication systems such as FH-SS and TDMA
systems. In both cases, the channel memory is under the
control of the system designer. More specifically, the designer
can optimize the memory length by finding the most appro-
priate number of hops that the transmitter should hop within
a codeword in FH-SS systems, and number of time slots in a
TDMA frame in TDMA systems.

VI. CONCLUSIONS

In this letter, a union bound on the performance of binary
coded systems employing STBCs over block fading channels
was derived. Coherent receivers with perfect and imperfect
CSI were considered. Results show that the performance
degradation due to channel memory reduces as the number of
transmit antennas is increased. The tradeoff between channel
estimation and diversity was investigated and the optimal
channel memory was approximated. Moreover, the effect of
antenna correlation on the system performance and the optimal
memory was studied. Results show that higher space diversity
increases the optimal memory.
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