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Abstract: I-Q trellis codes are known to increase the time diversity of coded systems.When I-Q codes
are used with multiple transmit antennas, the decoding and performance evaluation requires the
construction of the high-complexity super-trellis of the component codes. In the paper, the bit error
probability and the design criteria of I-Q space-time (ST) codes are derived using the transfer
functions of the component codes. Conditions for the geometrical uniformity of I-Q ST codes are
derived from the geometrical uniformity of the component codes. In addition, a low-complexity
iterative receiver for I-Q ST codes is presented. The receiver essentially performs iterative detection
and decoding. Results show that three iterations of the iterative receiver performs very close to the
optimal decoding.

1 Introduction

Information theoretic analysis of multi-antenna systems
[1–3] showed that the system capacity improves significantly
using space-time (ST) coding. Among different ST coding
schemes, trellis codes are suitable for delay-sensitive appli-
cations that require low-complexity receivers. Although ST
codes were originally proposed for quasi-static fading
channels [4,5] where time diversity is not available, they
can exist in the downlink of systems that are modelled by a
block fading channel model [6]. Examples of such systems
include frequency-hopped spread-spectrum (FH-SS) and
time-division multiple access (TDMA). If a trellis code is
used over a block fading channel with interleaving, the
channel can be considered as memoryless provided that
the number of fading blocks is several times larger than the
code constraint length. From this observation and owing to
the difficulty of optimising trellis codes for block fading
channels, various ST trellis codes were optimised for fully-
interleaved fading channels in [7–9].

The performance of a trellis code is determined by the time
diversity of the code, which can be increased using bit-
interleaved (BI) coded modulation (BICM) [10] or I-Q
encoding [11]. In [12] BI ST coded scheme was shown to
outperform trellis ST codes. The time diversity can be further
increased by combining BICM and I-Q encoding [13]. In the
I-Q encoder shown in Fig. 1, the input stream is encoded
using two independent trellis encoders and the output of each
encoder is used to determine one dimension of the complex
signal constellation, i.e., the I and Q dimensions. This
increases the time diversity of the code at the same or a lower
decoding complexity compared to conventional trellis codes.
When I-Q encoding is used to design ST codes [8] the super-

trellis corresponding to the product of the trellises of the
component codes is required for decoding and performance
evaluation.

The use of the super-trellis has two drawbacks. First,
the performance criteria of I-Q ST codes are expressed
as functions of the parameters of the super-trellis, which
makes it difficult to optimise and design the component
codes directly. Secondly, using the super-trellis results
in huge decoding complexity. For example, if each compo-
nent code has 32 states, the super-trellis has 32� 32¼ 1024
states. In this paper, the bit error probability in addition
to the design criteria of I-Q ST codes are expressed
as functions of the parameters of the component codes.
The proposed performance analysis applies directly to
BI I-Q ST coded systems. Furthermore, an iterative
detection and decoding (IDD) receiver for I-Q ST codes is
presented.

2 System model

The general I-Q ST transmitter is shown in Fig. 1. During a
frame of NT seconds, the transmitter receives an N-length

sequence of binary vectors fulgN
l¼ 1 each of k bits, and

outputs the nt-length signal vectors fslgN
l¼ 1, whose com-

ponents are transmitted over the nt antennas. Thus the system
throughput is k/T bits/s/Hz. The transmitter splits each
input vector into an I and Q vectors, i.e., uI,l and uQ,l . The
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Fig. 1 The structure of an I-Q encoded ST transmitter
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vector uI,l is encoded by the I encoder into a signal vector sI,l
of length nt, whose elements are drawn from an alphabet AI
which is a 1-D constellation such as M-PAM. The same
applies to the Q branch, resulting in the codewords

SI ¼ fsI ;lgN
l¼ 1 andSQ ¼ fsQ;lgN

l¼ 1. Then, the I and Q
codewords SI and SQ are interleaved, and the 2-D signal
si

l ¼ si
I ;l þ jsi

Q;l is transmitted over the ith antenna, where

j ¼
ffiffiffiffiffiffiffi
�1
p

. Thus the transmitted codeword is S¼SI+jSQ.
The received signal is given by

yl ¼
ffiffiffiffiffi
Es

p Xnt

i¼ 1

hi
ls

i
l þ zl ð1Þ

where Es is the average received energy and zl is an AWGN
sample modelled as a complex Gaussian CN ð0;N0Þ.
Here, hi

l is the fading gain from the ith transmit antenna
at time l, which is modelled as CN ð0; 1Þ. It is assumed
that the channel gains from different transmit antennas are
uncorrelated. Also, the fading process is assumed inde-
pendent owing to the infinite interleaving assumption.
It is assumed that the decoder has perfect channel state
information and employs a maximum likelihood (ML)
sequence decoding rule, which minimises the metric [4]

MðY;SÞ ¼
XN

l¼ 1

yl �
ffiffiffiffiffi
Es

p Xnt

i¼ 1

hi
ls

i
l

�����
�����
2

ð2Þ

where Y ¼ fylgN
l¼ 1. In the following, the bit error

probability of I-Q ST codes is derived.

3 Performance analysis

Throughout the paper, the subscripts c, u and b are used to
denote conditional, unconditional and bit error probabil-
ities, respectively. The conditional pairwise error probability
[4] is defined as the probability of decoding a received

sequence as a codeword Ŝ given that S was transmitted

and conditioned on the fading gains H ¼ fhlgN
l¼ 1, where

hl ¼ fhi
lg

nt
i¼ 1. It can be written as

PcðS; ŜÞ ¼ PrðMðY;SÞ4MðY; ŜÞjS;HÞ ð3Þ
After some manipulations, the conditional pairwise error
probability becomes

PcðS; ŜÞ ¼ Prðk4d2
EðS; ŜÞjS;HÞ ð4Þ

where

k ¼ 2
ffiffiffiffiffi
Es

p
Re

XN

l¼ 1

z�l
Xnt

i¼ 1

hi
le

i
l

( )
ð5Þ

where ei
l ¼ si

l � ŝi
l and (*) denotes the complex con-

jugate. In (5) the random variable k is Gaussian with

CN ð0; 2N0d2
EðS; ŜÞÞ distribution where

d2
EðS; ŜÞ ¼ Es

XN

l¼ 1

Xnt

i¼ 1

hi
j;le

i
l

�����
�����
2

ð6Þ

The unconditional pairwise error probability is found by
averaging (4) over the channel statistics as

PuðS; ŜÞ ¼ EH Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2

EðS; ŜÞ
2N0

s0@ 1A24 35
� 1

2

YL

l¼ 1

1

1þ dl
4N0

 !
ð7Þ

where the Chernoff bound was used in (7), dl ¼ Es
Pnt

i¼ 1 jei
lj
2

and L ¼ min jfl : sl 6¼ ŝlgj is the minimum time diversity
of the ST code. From (7), the design parameters for ST
codes over fully-interleaved fading channels [4] are

1) The diversity gain, L.

2) The coding gain defined by the squared product distance,

i.e., d2
p ¼

QL
l¼ 1 dl.

The main advantage of I-Q encoding is increasing the
diversity gain L of the overall ST code. In Table 1 we
compare the diversity gain and decoding complexity of ST
trellis codes with two transmit antennas and employing a
single encoder and I-Q encoding [8]. Here, the decoding
complexity is defined as the number of trellis branches in
each transition per input bit [11]. We see that for the same
throughput and decoding complexity, I-Q-encoded ST
codes have larger diversity gains L than ST codes employing
a single encoder.

If the trellis code is geometrically uniform [14], then the

all-zero codeword S0 ¼ fs0gN
l¼ 1 can be assumed to be

transmitted. In Section 4, it will be shown that an I-Q ST
code is uniformly geometric if its component codes are
uniformly geometric. In this case the error event probability
Pe,u is upper bounded as

Pe;u �
X
Ŝ

PuðS0; ŜÞ ð8Þ

The transfer function of the I-Q ST code is needed in order
to evaluate (8). It is discussed in the following.

3.1 Transfer function
The transfer function of a trellis code enumerates the num-
ber of codewords at every input weight and output distance
[14]. Denote the distinct squared Euclidean distances
from s0 as fx1; x2; . . . ; xmg; where fx : x ¼ Es ks� s0k2;
s 2 Antg. Each branch in the error state diagram of a
trellis code [14] is labelled by JuDv1

1 . . . Dvm
m , where u is the

weight of the input vector of the branch and vl¼ 1 if the
corresponding signal vector has a distance xl from s0 and
zero otherwise. Thus the transfer function of a trellis ST
code is

T ðJ ;DÞ ¼
X

u

X
v

aðu; vÞJuDv1
1 . . . Dvm

m ð9Þ

Table 1: Comparison of diversity order L and complexity of
ST codes employing single encoder and I-Q encoding
technique

Constellation ST Encoder # States L Complexity

QPSK
(2 bits/s/Hz)

Single 4 2 8

I-Q 4 3 8

Single 8 3 16

I-Q 8 4 16

16-QAM
(4 bits/s/Hz)

Single 16 2 64

I-Q 16 4 32

I-Q 32 5 64

Single 32 3 128

I-Q 64 6 128
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where D¼ {D1,y,Dm}, v¼ {v1,y, vm} and a(u, v) is the
number of codewords with input weight u and vi error
vectors with distance xi from s0, for i¼ 1,y,m. Comparing
(8) and (9) and using the integral form of the Q-function
[15], the bit error probability is

Pb �
1

pk

Z p=2

0

@T ðJ ;DÞ
@J

�����
J ¼ 1;Dv ¼ 1þ xv

4N0 sin2 y

� �
; v¼ 1;...;m

dy

ð10Þ
In the following, (10) is expressed as a function of the
transfer functions of the component codes rather than that
of the their super-trellis.

3.2 Pairwise error probability
Define E ¼ fS! Ŝg to be the event of decoding a recei-

ved sequence as a codeword Ŝ given that S was transmitted.
The conditional probability of E is denoted by PcðEÞ.
Similarly, the events I ¼ fSI ! ŜIg and Q ¼ fSQ ! ŜQg
are defined. Since E occurs if either I or Q occurs or both of
them, we have

PcðEÞr PcðIÞþ PcðQÞ ð11Þ

Our goal is to express (4) and (7) as functions of the
parameters of the I and Q codes explicitly. Realising that
ei

l ¼ ei
I ;l þ jei

Q;l, (6) becomes

d2
EðS; ŜÞ ¼ Es

XN

l¼ 1

Xnt

i¼ 1

hi
le

i
I ;l

�����
�����
2

þ
Xnt

i¼ 1

hi
le

i
Q;l

�����
�����
2

0@ 1A ð12Þ

Following the derivation in [4], (12) can be written as

d2
EðS; ŜÞ ¼Es

XN

l¼ 1

jqlj2ðdI ;l þ dQ;lÞ

¼ d2
EðSI ; ŜIÞþ d2

EðSQ; ŜQÞ ð13Þ

where dI ;l ¼ Es
Pnt

i¼ 1 jeI ;lj2; dQ;l ¼ Es
Pnt

i¼ 1 jeQ;lj2 and
the variable ql follows CN ð0; 1Þ distribution [4]. In (13), the
squared Euclidean distance is split into two parts: one part
owing to the error in the I decoder and another part owing to
the error in the Q decoder. Substituting (13) in (4), the
conditional pairwise error probability becomes

PcðEÞ ¼ Prðk4d2
EðSI ; ŜIÞþ d2

EðSQ; ŜQÞ jS;HÞ ð14Þ

When no error event occurs in the I code, d2
EðSI ; ŜIÞ ¼ 0,

and hence (14) becomes the probability of an error event in the

Q code, i.e., PcðQÞ ¼ PcðkQ4d2
EðSQ; ŜQÞjSQ;HÞ. Here, kQ

is the noise affecting the Q direction only which results

from k after removing ei
I ;l. Similarly, d2

EðSQ; ŜQÞ ¼ 0 when

no error event occurs in the Q code and (14) becomes

PcðIÞ ¼ PcðkI4d2
EðSI ; ŜIÞjSI ;HÞ. Using the Chernoff

bound the pairwise error probability in the I-code is

PuðIÞ �
1

2

YLl

l¼ 1

1

1þ dI ;l

4N0

ð15Þ

where LI ¼ min jfl : sI ;l 6¼ ŝI ;lgj is the minimum time
diversity of the I code. The coding gain for the I code is

defined as d2
P ;I ¼

QLI
i¼ 1 dI ;l. Similar expressions for PuðQÞ,

LQ and d2
P ;Q hold for the Q code. From (15) and (11), we

conclude that for fully-interleaved Rayleigh fading channels

1) The diversity gain achieved by an I-Q ST code is
L¼min(LI,LQ).

2) The coding gain achieved by an I-Q ST code is
d2

P ¼ minðd2
P ;I ; d

2
P ;QÞ.

Note that L¼LI¼LQ and d2
P ¼ d2

P ;I ¼ d2
P ;Q in the case of

identical component codes. Exact expressions for Pb;I and
Pb;Q are given by (10) by replacing T ðJ ;DÞ by TIðJ ;DÞ and
TQðJ ;DÞ for the I and Q codes, respectively, and replacing
L, dl and {dv} by the corresponding parameters of the I and
Q codes. From (11), the bit error probability of the I-Q ST
code is given by

Pb � Pb;I þ Pb;Q ð16Þ
The above performance analysis is not limited to trellis
codes, and hence it applies to any coded system employing
I-Q encoding. Similar to the work in [13], ST systems that
combine BI and I-Q encoding is promising to outperform
ST systems employing either I-Q encoding or BI. Recently,
a tight bound on the performance of BICM with single
transmit antenna was derived in [16]. Using the analysis in
[16] along with the analysis presented above, the perfor-
mance of BI I-Q ST coded systems can be analysed. Note
that the design and analysis of BI I-Q ST systems is beyond
the scope of this paper.

4 Geometrical uniformity

In the following, we prove that an I-Q ST code is
geometrically uniform if its components codes are geome-
trically uniform. A trellis code is said to be geometrically
uniform [17] if the distance spectrum of the code relative to
any codeword is the same as that taken relative to the all-
zero codeword. In [14], Biglieri et al. derived sufficient
conditions for geometrical uniformity of trellis codes, which
are stated as follows.

Consider a trellis code whose output signal s is given
by a mapping of a binary code vector c onto a signal con-
stellation point, s¼ f (c). Assume that the code space C is

partitioned into subsets C and ~C. Moreover, code-
words from C are permitted at a subset of trellis states

S, where the other state subset ~S permits codewords from
~C. Define the partition of signal space corresponding to C
as A ¼ fs : s ¼ f ðcÞ; 8c 2 Cg. Similarly, �A is defined

resulting in the signal space being partitioned intoA and ~A.
In [14], it was shown that a trellis code is geometrically
uniform if:

1) The subset ~C is a coset of C, i.e., ~C ¼ C þ ~c, where ~c is

the coset representative of ~C in bits and addition is
performed bitwise for each codeword in C.

2) The signal partitions A and ~A are isometrics, i.e., they
have the same distance spectrum

d2
E½f ðcÞ; f ðcþ eÞ� ¼ d2

E½f ðcþ ~cÞ; f ðcþ ~cþ eÞ� ð17Þ
for all c 2 C; e 2 C, where d2

E represents the squared
Euclidean distance between two signal points.

Proposition 1: An I-Q ST code is geometrically uniform if its
component I and Q codes are geometrically uniform.

Proof: Consider an I-Q ST code with geometrically uniform
component codes, i.e., the code spaces of the I and Q

encoders are partitioned into CI ; ~CI ¼ CI þ ~cI and CQ;
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~CQ ¼ CQ þ ~cQ, respectively. The output signal vector of an I-Q
ST encoder is given by a mapping s¼ f (c), where c¼ (cI,cQ) is
the concatenation of the I and Q code vectors. Therefore, the
code space of the I-Q ST encoder is partitioned into four sets

ðCI ; CQÞ; ð ~CI ; CQÞ; ðCI ; ~CQÞ and ð ~CI ; ~CQÞ, resulting in parti-

tioning the complex signal into ðAI ;AQÞ;ð ~AI ;AQÞ; ðAI ; ~AQÞ
and ð ~AI ; ~AQÞ, where AI and AQ are the signal partitions
corresponding to CI and CQ, respectively. Now we have:

1) The code sets ðCI ; CQÞ; ð ~CI ; CQÞ; ðCI ; ~CQÞ and ð ~CI ; ~CQÞ
are cosets of each other since their I and Q elements are
cosets.

2) The complex signal partitions ðAI ;AQÞ; ð ~AI ;AQÞ;
ðAI ; ~AQÞ and ð ~AI ; ~AQÞ are isometrics since their I and
Q components are isometrics.

Thus I-Q ST codes that employ geometrically uniform
component codes are also geometrically uniform. ’

5 Iterative detection and decoding (IDD)

The ML rule at the I and Q decoders requires the
computation of the likelihood functions p(Y7SI,H) and
p(Y7SQ,H), respectively. However, Y is a function of SI and
SQ and thus the super-trellis is needed for optimal decoding.
In this paper we propose the IDD receiver [12, 18] to solve
this problem. The block diagram of the IDD receiver is
shown in Fig. 2. It consists of a detection stage and two
soft-input soft-output (SISO) modules for the I and Q
codes. The detection stage computes for each codeword the
probabilities for l¼ 1,y,N

pðyljsI ;l; hlÞ ¼ KpðsI ;lÞ
X
8sQ

pðyljsI ;l; sQ;l; hlÞpðsQ;lÞ ð18Þ

pðyljsQ;l; hlÞ ¼ KðsQ;lÞ
X
8sI

pðyljsI ;l; sQ;l; hlÞpðsI ;lÞ ð19Þ

where K is a normalisation constant and pðyljsI ;l; sQ;l; hlÞ is
the channel transition probability. As in turbo decoding
[19], only extrinsic information is passed to the I and Q
decoders, which is defined as the probabilities in (18) and
(19) after removing the a priori information.

The I and Q SISO modules are maximum a posteriori
decoders that accept soft information about signal vectors
and update them using the BCJR algorithm in [20]. The

I-SISO decoder uses fpðsI ;lÞgN
l¼ 1 as its observation and

computes for l¼ 1,y,N

pðsI ;ljY;HÞ ¼ K
X

ðm;m0Þ:sI ;l

glðm;m0Þal�1ðm0ÞblðmÞ ð20Þ

where glðm;m0Þ ¼ pðyljsI ;l; hlÞ is the branch metric for a
transition in the I code from state m at time l to state m0 at
time l+1, which is computed in the detection stage. The
variables al and bl are the forward and backward recursions
in the BCJR algorithm [20]. A similar expression for the
Q-SISO module exist by replacing I with Q. The detection
stage and the SISO modules keep exchanging extrinsic
information about signal vectors in the codeword and
decision is made in the last iteration. Clearly, the complexity
of the I and Q SISO modules is linear in the number of
states of the component codes, which is a significant
reduction in complexity compared to the super-trellis.

6 Numerical results

In this paper, we consider I-Q ST systems with one receive
and two transmit antennas. As illustrative examples, I-Q ST
codes employing QPSK and 16-QAM signal constellations
[8] are used. The QPSK I-Q ST code is a 4-state trellis code
with a throughput of 2 bit/s/Hz, whereas we use 16-QAM
codes with either a 4-state or a 32-state encoders. The results
are shown against the signal-to-noise ratio (SNR) per
information bit gb¼Es/kN0.

The performance of the QPSK and the 4-state 16-QAM
I-Q codes are shown in Figs. 3 and 4, respectively. In both
cases the optimal decoder uses a 16-state super-trellis. The
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Fig. 2 The structure of the IDD receiver
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codeword size is N¼ 500. We observe that the bound is
tight to the optimal decoder simulations. Furthermore,
using IDD with three iterations performs very close to the
optimal decoding. Also shown in Fig. 3 is the performance
of a single-encoder QPSK ST code optimised for fully-
interleaved fading channels [8]. This code uses a 4-state
single encoder and has double the complexity of the
corresponding I-Q ST code. From the Figure, the I-Q code
with three iterations is 5dB better than the single-encoder
QPSK code at Pb¼ 10�4.

In Fig. 5 the performance of the 32-state 16-QAM I-Q
ST code is compared with a 16-QAM ST code employing a
16-state single encoder [8] having the same complexity. We
observe that the I-Q code with three iterations is 5dB better
than the single-encoder code. Note that the optimal decoder
of the 32-state I-Q ST code needs a 1024-state super-trellis,
which has a high complexity compared to the IDD receiver.
In Fig. 6, it is shown via simulation that the effect of the
codeword size N on the performance of the IDD receiver is
negligible, which applies similarly for BI coded modulation

[10]. This insures that I-Q ST codes are suitable for delay-
sensitive applications.

7 Conclusions

In this paper, the bit error probability of I-Q ST codes was
derived as a function of the transfer functions of the
component codes. Moreover, design parameters for I-Q ST
codes over fully-interleaved fading channels were derived in
terms of the parameters of the component codes. A low-
complexity iterative receiver for I-Q ST codes was derived
and tested. Results show that the IDD receiver with three
iterations results in a very close performance to the optimal
decoder employing the super-trellis of the component codes.
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