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Abstract

Until recently, a lot of work has been done to develop algorithms that utilize the distributed structure of an ad hoc
wireless sensor network to estimate a certain parameter of interest. However, all these algorithms assume that the
input regressor data is available to the sensors, but this data is not always available to the sensors. In such cases, blind
estimation of the required parameter is needed. This work formulates two newly developed blind block-recursive
algorithms based on singular value decomposition (SVD) and Cholesky factorization-based techniques. These
adaptive algorithms are then used for blind estimation in a wireless sensor network using diffusion of data among
cooperative sensors. Simulation results show that the performance greatly improves over the case where no
cooperation among sensors is involved.

Keywords: Blind estimation; Diffusion; Adaptive networks

1 Introduction
This work studies the problem of blind distributed esti-
mation over an ad-hoc wireless sensor network (WSN).
WSNs have recently generated a great deal of renewed
interest in distributed computing. New research avenues
have opened up in the fields of estimation and tracking of
parameters of interest, in applications requiring a robust,
scalable and low-cost solution. To appreciate such appli-
cations, consider a set of N sensor nodes spread over a
geographic area as shown in Figure 1. Sensor measure-
ments are taken at each node at every time instant. The
objective of the sensor is to estimate a certain unknown
parameter of interest using these sensed measurements.

Several algorithms have been devised in the literature
for distributed estimation [1-5]. The work in [1] intro-
duces a distributed estimation approach using the recur-
sive least squares algorithm. Other algorithms involving
the least-mean-square (LMS) approach have also been
suggested [2-5].

However, all these algorithms assume that the input
regressor data, uk,i, is available at the sensors. If this infor-
mation is not available, then the said problem becomes a
blind estimation problem. Blind algorithms have been a
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topic of interest ever since Sato devised a blind algorithm
[6] in the context of equalization [7]. Since then, several
algorithms have been derived for blind estimation [8-15].
The work in [8] summarizes the second-order statistics-
based approaches for blind identification. These include
multichannel as well as single-channel blind estimation
methods such as the works in [9] and [10]. The work in
[11] is one of the most cited blind estimation techniques
for a single-input-single-output (SISO) model. However,
unlike in [11], it is shown in [12] that the technique of
[11] can be improved upon using only two blocks of data.
A key idea in [12] is used in [13] to devise an algorithm
that does indeed show improvement over the algorithm of
[11]. However, the computational complexity of this new
algorithm (in [13]) is very demanding. A generalized algo-
rithm is devised in [14], improving upon both algorithms
developed in [12,13]. In [15], a Cholesky factorization-
based least squares solution is suggested that simplifies
the work of [11,13,14]. Although the performance of the
algorithm developed in [15] is not as good as that of the
previous algorithms, it nevertheless provides an excellent
trade-off between performance level and computational
complexity. However, in systems where less complexity is
required and performance can be compromised to some
extent, this algorithm would provide a good substitute to
the algorithms developed in [12,13].
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Figure 1 Adaptive network of N nodes.

As mentioned above, for the case where the input
regressor data is not available to the WSN environ-
ment used, then blind estimation techniques become
mandatory. In this case, since blind estimation tech-
niques have not yet been developed for this field, blind
block-recursive least squares algorithms would have to be
devised, inspired from the works in [11] and [15], and then
implemented in a distributed WSN environment using the
diffusion approach suggested in [1].

The following notation has been used here. Bold-
face letters are used for vectors/matrices and nor-
mal font for scalar quantities. Matrices are defined
by capital letters and small letters are used for vec-
tors. The notation (.)T stands for transposition for vec-
tors and matrices and expectation operation is denoted
by E [.]. Any other mathematical operators used in
this paper will be defined as and when introduced in
the paper.

The paper is divided as follows: Section 2 defines the
problem statement. Section 3 gives a brief overview of
the blind estimation algorithms taken into consideration
in this work. Section 4 proposes the newly developed
recursive forms of the two algorithms, as well as their
diffusion counterparts, to be used in wireless sensor net-
works. Section 5 studies the computational complexity of
all the algorithms. The simulation results are discussed
in detail in section 6. Finally, the paper is concluded in
section 7.

2 Problem statement
Consider a network of K sensor nodes deployed over
a geographical area, to estimate an (M × 1) unknown
parameter vector wo as shown in Figure 1. Each node k
has access to a time realization of a scalar measurement
dk(i) that is given by

dk (i) = uk,iwo + vk (i) , 1 ≤ k ≤ K (1)

where uk,i is a (1 × M) input regressor vector, vk is a
spatially uncorrelated zero-mean additive white Gaussian

noise with variance σ 2
vk

and i denotes the time index. The
input data is assumed to be Gaussian. The aim of this
work is to estimate the unknown vector wo using the
sensed data dk(i) without knowledge of the input regres-
sor vector. The estimate of the unknown vector can be
denoted by an (M × 1) vector wk,i. Assuming that each
node k cooperates only with its neighbors and k has access
to updates wl,i, from its Kk neighboring nodes at every
time instant i, where {l ∈ Kk , l �= k}, in addition to its own
estimate, wk,i. The adapt-then-combine (ATC) diffusion
scheme [16] first updates the local estimate at each node
using the adaptive algorithm and then fuses together the
estimates from the Kk neighboring nodes. This scheme
will be used in this work for the development of our dis-
tributed algorithm. Note that, even though this work is
designed for a fixed topology, it can be extended to a
dynamic one.

3 Blind estimation algorithm
In this work, the input regressor data, uk(i) is assumed
to be not available to the sensors and the unknown vec-
tor wo is estimated using only the sensed values, dk(i).
Since the data considered here is Gaussian, a method
using second-order statistics only is sufficient for such
an estimation problem as it will capture all the required
data statistics. Even for the case of non-Gaussian data,
such an approach would provide a suboptimal yet accu-
rate enough estimate. The work in [11] uses the second-
order statistics in an intelligent manner to create a null
space with respect to the unknown vector wo. At the
receiver end, this null space is then exploited to estimate
the unknown vector. The authors in [15] further sim-
plify the algorithm of [11] by proposing a new algorithm
that reduces complexity but at a cost of performance
degradation. These two algorithms are taken into con-
sideration in this work as one provides excellent results
whereas the other provides a computationally tractable
solution.

3.1 Singular value decomposition-based blind algorithm
The work in [11] uses redundant filterbank precoding to
construct data blocks that have trailing zeros. These data
blocks are then collected at the receiver and used for blind
channel identification. In this work, however, there is no
precoding required. The trailing zeros will still be used
though, for estimation purposes. Let the unknown param-
eter vector be of size (M × 1). Suppose the input vector is
a (P × 1) vector with (P − M) trailing zeros

sk(i) = {
sk, 0 (i) , sk,1 (i) , . . . , sk, M−1 (i) , 0, . . . , 0

}T ,
(2)
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where P and M are related through P = 2M − 1. The
unknown parameter vector can be written in the form of
a convolution matrix given by

W =

⎡
⎢⎢⎢⎢⎣

w (0) · · · w (M − 1) 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . . . . 0
0 · · · 0 w (0) · · · w (M − 1)

⎤
⎥⎥⎥⎥⎦

T

,

(3)

where wo = [w (0) , w (1) , . . . , w (M − 1)] is the unknown
parameter vector. The output data block can now be
written as

dk(i) = Wsk(i) + vk(i), (4)

where dk(i) is the ((2M − 1)× 1) output data block and vk
is the added noise. The output blocks {dk(i)} are collected
together to form the following matrix

Dk, N = (dk(0), dk(1), . . . , dk(N − 1)) , (5)

where N is greater than the minimum number of data
blocks required for the input blocks to have a full rank.
The singular value decomposition (SVD) of the autocor-
relation of Dk, N gives a set of null eigenvalues. Thus, the
eigendecomposition

Dk, N DT
k, N = (

Ūk Ũk
) (

�M×M 0M×(M−1)

0(M−1)×M 0(M−1)×(M−1)

)

×
(

ŪT
k

ŨT
k

)
,

(6)

where Ūk is the (P × M) matrix of eigenvectors and Ũk is
a (P × (M −1)) matrix whose columns form the null space
for Dk, N . This implies

ŨT
k W = 0, (7)

which can also be written as

ũT
k, mW = 0T , (8)

where m = 1, . . . , M − 1 and ũk,m is simply the mth vector
of Ũk . This equation denotes convolution since, as pointed
earlier, W is essentially a convolution matrix. Since con-
volution is a commutative operation, Equation 8 can also
be written as

wTUk := wT (
Uk,1 . . .Uk, M−1

) = 0T , (9)

where w is a component vector of the convolution matrix
W and Uk, m is an (M × M) Hankel matrix given by

Uk, m =

⎡
⎢⎢⎢⎣

ũk, m (0) ũk, m (1) · · · ũk, m (P − M)

ũk, m (1) ũk, m (2) · · · ũk, m (P − M + 1)

...
...

...
...

ũk, m (M − 1) ũk, m (M) · · · ũk, m (P − 1)

⎤
⎥⎥⎥⎦ .

(10)

The final parameter estimate is given by the unique solu-
tion (up to a constant factor) of Equation 9. It is important
to note here that due to the presence of noise, the final
estimate is not accurate.

3.2 Cholesky factorization-based blind algorithm
The work in [15] describes a method that replaces the
SVD operation with the Cholesky factorization operation
to blindly estimate the channel. Again, the received block
data matrix can be written as (5). Taking the autocorrela-
tion of Dk,N and assuming the input data regressors to be
white Gaussian with variance σ 2

s, k , we get

Rd, k = E
[

DN DT
N

]
= σ 2

s, kWWT + σ 2
v, kI. (11)

Now if the second-order statistics of both the input
regressor data as well as the additive noise are known,
then the correlation matrix for the unknown vector can be
written as

Rw = WWT = (
Rd, k − σ 2

v, kI
)
/σ 2

s, k . (12)

However, this information, particularly the information
about the input regressor data, is not always known and
cannot be easily estimated either. Therefore, the cor-
relation matrix of the unknown parameter vector has
to be approximated by the correlation matrix of the
received/sensed data. Now the algorithm in [15] uses the
Cholesky factor of this correlation matrix to provide a
least squares estimate of the unknown parameter vector.

The method given in [15] is summarized here. Since
the correlation matrix is not available at the receiver, an
approximate matrix is calculated using K blocks of data.
So the correlation matrix is given by

R̂d, k = 1
K

K∑
i=1

dk(i)dT
k (i). (13)

As the second-order statistics of the noise are not known,
the noise variance is estimated and then subtracted from
the data correlation matrix. Thus, we have

R̂w, k = R̂dk − σ̂ 2
v, kIK = 1

K

K∑
i=1

dk(i)dT
k (i) − σ̂ 2

v, kIK . (14)



Bin Saeed et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:136 Page 4 of 20
http://asp.eurasipjournals.com/content/2014/1/136

Taking the Cholesky factor of this matrix gives us the
upper triangular matrix Ĝk

Ĝk = chol
{

R̂w, k
}

. (15)

Next, we use the vec operator to get an (M2 × 1) vector ĝk

ĝk = vec
{

Ĝk
}

. (16)

It is given in [15] that the vectors g and wo are related
through

g = Qwo, (17)

where Q is an (M2 × M) selection matrix given by Q =[
JT
1 JT

2 . . . JT
M

]T , and the (M ×M) matrices Jq are defined as

Jc =
{

1, if a + b = c − 1
0, otherwise, (18)

where {a, b, c} = 0, . . . , M − 1. So the least squares esti-
mate of the unknown parameter vector is given by [15]

ŵk =
(

QT Q
)−1

QT ĝk . (19)

The work in [15] also gives a method for estimating
the noise variance that is on the whole adequate except
it may not provide correct estimates of the noise vari-
ance at low SNRs. As a result, subtracting the estimated
variance from the autocorrelation matrix may not yield a
positive-definite matrix. In such cases, the use of Cholesky
factorization may not be justified. However, neglecting the
noise variance estimate altogether may lead to a poor esti-
mate of the parameter vector. Despite this shortcoming,
the main advantage of this method remains its very low
computational complexity. Whereas the method of [11]
requires the singular value decomposition of the autocor-
relation matrix followed by the building of Hankel matri-
ces using the null eigenvectors and then finding a unique
solution to an over-determined set of linear equation, this
method [15] simply evaluates the Cholesky factor (upper
triangular matrix) of the autocorrelation matrix and then
uses it to directly find the required estimate. Computa-
tional complexity is, thus, greatly reduced but at the cost
of a performance degradation.

Both of the above-mentioned methods require several
blocks of data to be stored before estimation can be per-
formed. Although the least squares approximation gives
a good estimate, a sensor network requires an algorithm
that can be deployed in a distributed manner, which is
possible only with recursive algorithms. Therefore, the
first step would be to make both algorithms in [11] and
[15] recursive in order to utilize them in a WSN setup.

4 Proposed recursive blind estimation algorithms
In the ensuing, the previously mentioned blind estimation
algorithms are made recursive and applied over a wireless
sensor network.

4.1 Blind block recursive SVD algorithm
Here, we show how the algorithm from [11] can be made
into a blind block-recursive algorithm. Since the algo-
rithm requires a complete block of data at each processing
instant, we therefore base our iterative process on data
blocks as well. So instead of the matrix Dk , we have the
block data vector dk . The autocorrelation matrix for the
first data block is defined in as

R̂d, k (1) = dk(1)dT
k (1). (20)

The matrix is expanded for two blocks in the original
algorithm as

R̂d, k(2) = Dk,2DT
k,2

= [
dk(1) dk(2)

] [
dT

k (1)

dT
k (2)

]

= dk(1)dT
k (1) + dk(2)dT

k (2)

= R̂d, k (1) + dk(2)dT
k (2). (21)

Thus, a generalization of (21) can be written as

R̂d, k (i) = R̂d, k (i − 1) + dk(i)dT
k (i). (22)

The first few iterations may not give a good estimate and
the error may even seem to be increasing as the matrix
will be rank deficient at this early stage. However, as more
data blocks are processed, the rank becomes gradually full
and the estimate then begins to gradually improve. The
next step is to get the eigendecomposition of the auto-
correlation matrix. Applying the SVD on Rd, k yields the
eigenvector matrix Uk , from which we get the (M−1×M)
matrix Ũk that forms the null space of the autocorrelation
matrix. From Ũk , we then form the M Hankel matrices
of size (M × M + 1) each, which are then concatenated
to give the matrix Uk(i) from which the estimate w̃k(i)
is finally derived. This sequential derivation process is
depicted below in (23):

SVD
{

Rd, k (i)
} ⇒ Uk (i) ⇒ Ũk (i) ⇒ Uk (i) ⇒ w̃k(i).

(23)

The update for the estimate of the unknown parameter
vector is then given by

ŵk(i) = λkŵk(i − 1) + (1 − λk) w̃k(i), (24)

It can be seen from (23) that the recursive algorithm
does not become computationally less complex. However,
it does require lesser memory compared to the original
algorithm of [11] and the result improves with an increase
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in the number of data blocks processed. The performance
almost matches that of the algorithm of [11].

Algorithm 1 describes the steps of the blind block recur-
sive SVD (RS) algorithm. The forgetting factor is fixed
in this case. If the forgetting factor value were to be
changed to λk(i) = 1 − 1

i , the algorithm would then
become the variable forgetting factor RS (VFFRS) algo-
rithm. However, simulations show that the VFFRS algo-
rithm converges more slowly than its fixed forgetting
factor counterpart. The simulation results show that if the
forgetting factor is small for the fixed forgetting factor
case, the algorithm converges faster even though it gives
a higher error floor at steady-state. While for the VFFRS
algorithm, the forgetting factor increases with time
resulting in slow convergence even though the steady-
state error is lower compared to the fixed forgetting
factor case.

Algorithm 1 Summary of blind block recursive SVD
algorithm
Step 1. Form auto-correlation matrix for iteration i from
equation (22).
Step 2. Get Uk (i) from SVD of R̂d, k (i).
Step 3. Form Ũk (i) from the null eigenvectors of Uk (i).
Step 4. Form Hankel matrices of size (L × M − 1) from
individual vectors of Ũk (i).
Step 5. Form Uk (i) by concatenating the Hankel matrices.
Step 6. The null eigenvector from the SVD of Uk (i) is the
estimate w̃k(i).
Step 7. Use w̃k(i) in equation (24) to get the update ŵk(i).

4.2 Blind block recursive Cholesky algorithm
In this section, we show how the algorithm of [15] can be
converted into a blind block recursive solution.

Equation 14 can be rewritten as

R̂w, k (i) = 1
i

i∑
n=1

dk(n)dT
k (n) − σ̂ 2

v, kIK (25)

= 1
i

dk(i)dT
k (i) + 1

i

i−1∑
n=1

dk(n)dT
k (n) − σ̂ 2

v, kIK

= 1
i

(
dk(i)dT

k (i)−σ̂ 2
v, kIK

)
+ i−1

i
R̂w, k (i − 1) .

Similarly, we have

Ĝk (i) = chol
{

R̂w, k (i)
}

, (26)

ĝk(i) = vec
{

Ĝk (i)
}

. (27)

Letting QA = (
QT Q

)−1 QT , we have

w̄k(i) = QAĝk(i). (28)

We further apply a smoothing step to get the final
estimate:

ŵk(i) = λk(i)ŵk(i − 1) + (1 − λk(i)) w̄k(i), (29)

where λk(i) = 1 − 1
i is a variable forgetting factor.

Letting λk(i) = 1− 1
i , the blind block recursive Cholesky

algorithm is summarised in Algorithm 2. This table
defines the Blind Block Recursive Cholesky algorithm
with variable forgetting factor (VFFRC). If the forgetting
factor is fixed then the algorithm can simply be called
Blind Block Recursive Cholesky (RC) algorithm. Simula-
tion results show that the VFFRC algorithm converges to
the least squares solution obtained through the algorithm
given in [15]. The RC algorithm can also achieve the same
result if the value of the forgetting factor is extremely close
to 1. However, the convergence speed of the RC algorithm
is slower than that of the VFFRC algorithm even though
it requires lesser memory and is slightly less computa-
tionally complex. There are two issues with the recursive
algorithm. Firstly, the Cholesky factorization cannot be
applied until at least M blocks of data have been received
as the data correlation matrix needs to be first positive
definite before the Cholesky method can be correctly
applied. The second issue involves the variance of the
additive noise. In [15], it is shown that if the noise variance
can be estimated, the estimate of the unknown vector will
improve. However, using the noise variance in the recur-
sive algorithm can make the resulting matrix have zero
or negative eigenvalues before a sufficient number of data
blocks were processed, thus making the use of Cholesky
factorization unjustifiable. However, neglecting the noise
variance altogether will lead to a performance degradation
of this algorithm even though it will be computationally
less complex than the SVD approach. One approach is
to estimate the noise variance after a certain number of
blocks have been received and then use that value for the
remainder of the iterations.

Algorithm 2 Summary of blind block recursive
Cholesky (RC) algorithm
Step 1. Let forgetting factor be defined as λk(i) = 1 − 1

i .
Step 2. Form auto-correlation matrix for iteration i using
λk(i) in equation (25) to get

R̂w, k (i) = (1 − λk (i))
(

dk(i)dT
k (i) − σ̂ 2

v, kIK
)

+ λk (i) R̂w, k (i − 1)

Step 3. Get Ĝ (i) as the Cholesky factor of R̂w, k (i).
Step 4. Apply the vec operator to get ĝk(i).
Step 5. Use λk(i) in equation (29) to get the final update

ŵk(i) = QA
(
ĝk(i) − λiĝk(i − 1)

) + λk(i)ŵk(i − 1).



Bin Saeed et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:136 Page 6 of 20
http://asp.eurasipjournals.com/content/2014/1/136

4.3 Diffusion blind block recursive algorithms
In a wireless sensor network, a distributed algorithm is
required, through which nodes can interact with each
other and improve their individual estimates as well as
the overall performance of the network. In such a sce-
nario, a recursive algorithm is required. This is one major
reason for requiring a recursive blind algorithm. Each
node can individually update its estimate and then col-
laborate with the neighboring nodes to improve that
estimate. A comparison of different distributed schemes
has shown that the Adapt-Then-Combine (ATC) diffusion
strategy provides the best performance [16]. Therefore, we
also implement our distributed algorithms using the ATC
scheme.

For the diffusion-based RS algorithm, all nodes evaluate
their own autocorrelation matrix updates and then per-
form the SVD operation. This is followed by a preliminary
estimate of the unknown vector. The preliminary results
are then combined with those of the neighboring nodes.
As a result of this cooperation, the result of the network
improves, as will be shown in the simulations. Simi-
larly, for the diffusion RC algorithm, each node performs
the recursion and reaches a preliminary estimate of the
unknown vector which is then combined with those of the
neighboring nodes. These are summarized in Algorithms
3 and 4, where the subscript k denotes the node number,
Nk is the set of neighbors of node k, ĥk is the intermediate
estimate for node k and clk is the weight connecting node
k to its neighboring node l ∈ Nk , where Nk includes node
k, and

∑
clk = 1.

Algorithm 3 Summary of diffusion blind block
recursive SVD algorithm
Step 1. Form auto-correlation matrix for iteration i from
equation (22) for each node k.

R̂d, k (i) = dk, idT
k, i + R̂d, k (i − 1)

Step 2. Get Uk (i) from SVD of R̂d, k (i).
Step 3. Form Ũk (i) from the null eigenvectors of Uk (i).
Step 4. Form Hankel matrices of size (L × M − 1) from
individual vectors of Ũk (i).
Step 5. Form Uk (i) by concatenating the Hankel matrices.
Step 6. The null eigenvector from the SVD of Uk (i) is the
estimate w̃k, i.
Step 7. Use w̃k, i in equation (24) to get the intermediate
update ĥk, i.

ĥk, i = λŵk, i−1 + (1 − λ) w̃k, i

Step 8. Combine estimates from neighbors of node k to get
ŵk, i.

ŵk, i =
∑
lεNk

clkĥl, i

Algorithm 4 Summary of diffusion blind block
recursive Cholesky algorithm
Step 1. Let forgetting factor be defined as λk,i = 1 − 1

i .
Step 2. Form auto-correlation matrix for iteration k from

R̂w,k(i)=
(
1 − λk, i

)(
dk, idT

k, i−σ̂ 2
v, kIK

)
+λk, iR̂w, k (i − 1)

Step 3. Get Ĝk (i) as the Cholesky factor of R̂w, k (i).
Step 4. Apply the vec operator to get ĝk, i.
Step 5. The intermediate update is then given as

ĥk, i = QA
(
ĝk, i − λk, iĝk, i−1

) + λk, iŵk, i−1.

Step 6. The final update is the weighted sum of the esti-
mates of all neighbors of node k

ŵk, i =
∑
lεNk

clkĥl, i

5 Complexity of the recursive algorithms
In order to fully understand the variation in performance
of these two algorithms, it is necessary to look at their
computational complexity as it will allow us to estimate
the loss in performance that would result from a reduction
in computational load. We first analyze the complexity of
the original algorithms and then deal with that of their
recursive versions.

5.1 Blind SVD algorithm
The length of the unknown parameter vector is M and
the data block size is K. Since a total number of N data
blocks are required for the estimation of the unknown
parameter vector, where N ≥ K , the resulting data
matrix will therefore be of size K × N . The data cor-
relation matrix will thus be of size K × K and this
function will require K2 (2N − 1) calculations (including
both multiplications and additions) for its computation.
The next step is singular value decomposition (SVD),
done using the QR decomposition algorithm. This algo-
rithm requires a total of

[ 4
3 K3 + 3

2 K2 + 19
6 K − 6

]
cal-

culations. Then the null eigenvectors are separated and
each eigenvector is used to form a Hankel matrix with
all the Hankel matrices then stacked together to form
a matrix of size M × (K − M)(M − 1). The unique
null vector of this new matrix gives the estimate of the
unknown vector. To find this eigenvector requires another[(

2K + 7
3
)

M3 − 2M4 + (1 − 4K) M2

2 + 19
6 M − 6

]
calcu-

lations. So the overall computational load required for the
algorithm can be given as

TC, SVD =4
3

K3 +
(

2N + 1
2

)
K2 + 19

6
(K + M)

+
(

2K + 7
3

)
M3 − 2M4 + (1 − 4K)

M2

2
− 12.

(30)
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5.2 Blind Cholesky algorithm
Like the SVD algorithm, here also the unknown vector
length is M and the data block size is K. For computational
purposes and for the blind SVD algorithm, the total num-
ber of data blocks is taken as N. The correlation process is
the same except for the final averaging step which results
in an extra division so the total number of calculations
becomes K2 (2N − 1) + 1. The next step is to estimate
the noise variance, which requires an SVD decomposi-
tion and therefore an extra number of calculations given
by

[ 4
3 K3 + 3

2 K2 + 19
6 K − 6

]
. After the SVD decomposi-

tion, only one further division is required to estimate
the noise variance. The noise variance is then subtracted
from the diagonal of the correlation matrix, resulting in
another K calculations. After that, the Cholesky factoriza-
tion is performed, which requires

[ 1
3

(
M3 + 3M2 + M

)]
calculations. Finally, the last step is to get the esti-
mate of the unknown vector through the pseudo-
inverse of Cholesky-factorized data correlation matrix
and this step requires further

[
M

(
2M2 − 1

)]
calcula-

tions. Thus, the total number of calculations required is
given as

TC, Chol = 4
3

K3 +
(

2N + 1
2

)
K2 + 19

6
K − 4

+ 1
3

(
7M3 + 3M2 − M

)
.

(31)

5.3 Blind block recursive SVD algorithm
When the blind SVD algorithm is made recursive, we
notice that this will involve only a slight change in the
overall algorithm but will really halve the total compu-
tational load. Since the correlation matrix is only being
updated at each iteration, the number of calculations
required for the first step are now only 2K2 instead of
K2 (2N − 1). However, an extra (M + 2) calculations are
required for the final step. The overall number of calcula-
tions is thus given as

TC, SRLS = 4
3

K3 + 7
2

K2 + 19
6

K +
(

2K + 7
3

)
M3 − 2M4

+ (1 − 4K)
M2

2
+ 25

6
M − 10 = O

(
K3) .

(32)

Table 1 Computations for original least squares
algorithms under different settings

M = 4 N = 10 N = 10 N = 20 N = 20 N = 20

K = 8 K = 10 K = 8 K = 10 K = 20

SVD 2,434 4,021 3,714 6,021 28,496

Chol 2,180 3,575 3,460 5,575 27,090

Table 2 Computations for recursive algorithms under
different settings

M = 4 K = 8 K = 10 K = 20

RS 1,352 2,327 13,702

RC 1,100 1,883 12,298

RCNV 300 372 972

5.4 Blind block recursive Cholesky algorithm
Similarly, the number of calculations for the first step
for this algorithm is reduced to (2K2 + 2) from the
(K2 (2N − 1) + 1) calculations required by its non-
recursive counterpart. The final step includes an extra
(K2 + M + 2) calculations. Thus, the total number of
calculations is now given as

TC, CRLS = 4
3

K3 + 7
2

K2 + 19
6

K + 1
3

(
7M3 + 3M2 + 2M

)
= O

(
K3) .

(33)

However, it should be noted here that the estimation
of the noise variance need not be repeated at each itera-
tion. After a few iterations, the number of which can be
fixed a priori, the noise variance can be estimated once
only and then this same estimated value can be used in the

Figure 2 Network of 20 nodes.
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Figure 3 MSD at SNR = 10 dB and λ = 0.9.

remaining iterations. The number of calculations, thus,
reduces to

TC, CRLS = 2K2+1
3

(
7M3 + 3M2 + 2M

)+4 = O
(
K2) .

(34)

5.5 Comparison of all algorithms
Here, we compare all of the algorithms discussed in the
previous sections, using specific scenarios where the value

for M is fixed to 4, that of K is varied for all algorithms
and the value of N is varied between 10 and 20 for the
least squares algorithms. The number of calculations for
the two recursive algorithms discussed before are shown
for one iteration only. Recall that in the second algorithm,
i.e. the blind block recursive Cholesky algorithm, the noise
variance is calculated only once, after a pre-selected num-
ber of iterations have occurred, and then kept constant for
the remaining iterations. Tables 1 and 2 below summarize
the results.

Figure 4 MSD at SNR = 20 dB and λ = 0.9.
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Figure 5 MSD at SNR = 10 dB and λ = 0.99.

Table 1 lists the number of computations for the origi-
nal algorithms, showing that the Cholesky-based method
requires fewer computations than the SVD-based method
and so the trade-off between performance and complex-
ity is justified. If the number of blocks is small, then
the Cholesky-based method may even perform better
than the SVD-based method as shown in [15]. Here it is
assumed that the exact length of the unknown vector is
known. Generally, an upper bound of this value is known
and that value is used instead of the exact value, resulting
in an increase in computations. This assumption is made

for both algorithms here to make their comparative study
fair.

Table 2 lists the computations-per-iteration for the
recursive versions of these two algorithms. RS and RC
give the number of computations for the recursive SVD
algorithm and the recursive Cholesky algorithm respec-
tively. RCNV lists the number of computations when the
noise variance is estimated only once in the recursive
Cholesky algorithm. This shows how the complexity of
the algorithm can be reduced by an order of magnitude
by adopting an extra implicit assumption regarding the

Figure 6 MSD at SNR = 20 dB and λ = 0.99.
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Figure 7 MSD at SNR = 20 dB for RC with different forgetting factors.

wide-sense stationarity of the noise and hence the con-
stancy of its variance from one iteration to the next.
Although the performance does suffer slightly, the gain
in the reduction of computational complexity more than
compensates for this loss.

It is important to note here that even though the SVD
and Cholesky factorization operations are being run at
every iteration, there is a significant gain achieved in the
calculation of the autocorrelation function. While each
batch processing algorithm would require a total of P2N2

multiplications, where (P × N) is the size of the data block
matrix, the recursive algorithms only require P2N mul-
tiplications. Thus, there is a reduction in the number of
multiplications by a factor of N, which becomes significant
when the number of blocks N is large.

6 Simulations and results
Here we compare results for the newly developed recur-
sive algorithms. Results are shown for a network of 20
nodes, shown in Figure 2. The forgetting factor is both

Figure 8 MSD at SNR = 20 dB for RS with different forgetting factors.
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Figure 9 MSD at SNR = 20 dB for RS with different forgetting factors (Transient behavior).

varied as well as kept fixed in order to study its impact on
the performance of each algorithm. The two algorithms
are compared with each other and in different scenarios.
The forgetting factor, data block size and network size are
changed one at a time while all other variables are kept
constant in order to closely monitor the impact of each
of these three varying parameters on the performance of
each algorithm.

6.1 Performance of the SVD and Cholesky algorithms
Initially, the two algorithms are used to identify an
unknown parameter vector of length M = 4 in an envi-
ronment with the two signal-to-noise ratios (SNR) of 10

and 20 dB. The two forgetting factors used are fixed at λ =
{0.9, 0.99}. The block size is taken as K = 8. The results for
both algorithms are shown in Figures 3, 4, 5 and 6, for both
diffusion (DRC, DRS) and no cooperation (NRC, NRS)
cases. As can be seen from these figures, the Cholesky
algorithm does not perform well with the smaller forget-
ting factor. However, the performance improves apprecia-
bly with an increase in the forgetting factor but its speed
of convergence decreases significantly as well. However,
the one main positive attribute of the Cholesky algorithm
remains to be its low computational complexity. For the
SVD algorithm, the performance improves slightly with
an increase in forgetting factor but at a significant loss of

Figure 10 MSD at SNR = 20 dB for RS with different forgetting factors (Near steady-state behavior).
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Figure 11 MSD at SNR = 10 dB under best performance conditions.

convergence speed. These remarks have prompted us to
further analyze the impact of the forgetting factor on the
performance on these two algorithms, as discussed next.

6.2 Further simulation-based analysis of the effect of
forgetting factor

Next, the performance of each algorithm is separately
studied for different values of the forgetting factor. For
the fixed forgetting factor case, the values taken are λ =
{0.9, 0.95, 0.99} and the results are compared with those

of the variable forgetting factor case. The SNR is chosen
as 20 dB and the network size is taken to be 20 nodes.
Figure 7 shows the results for the Cholesky factorization-
based RC algorithm. It is seen that the performance
improves as the forgetting factor is increased but the con-
vergence slows down. The algorithm performs best when
the forgetting factor is variable. The results for the SVD-
based RS algorithm are shown in Figures 8, 9 and 10.
Figure 8 shows the results for all three fixed forgetting
factors as well as those for its variable one. However, as

Figure 12 MSD at SNR = 20 dB under best performance conditions.
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Table 3 Performance comparison with the batch processing algorithms (all results are in dB)

SNR CHOL [15] NRC DRC SVD [11] NRS DRS

10 dB −17.79 −15.36 −21.34 −25.69 −20.63 −26.23

20 dB −18.36 −16.34 −22.35 −31.38 −26.35 −31.90

there is not much difference in performance between the
four cases, Figure 8 is then zoomed in to see more clearly
the algorithm’s transient and near-steady-state behavior.
Figure 9 shows the result of this zooming effect. The speed
of convergence is fastest for λ = 0.9 and slowest for
λ = 0.99. For the variable forgetting factor (VFF) case,
the speed is fast initially but then slows down with time.
Figure 10 shows the behavior of the algorithm near steady-
state. It is evident that the fixed case of λ = 0.99 would
yield the lowest steady-state error whereas the VFF case
would take the longest to reach the steady-state. Although
the steady-state performance of the variable forgetting
factor may be as good as for the case of λ = 0.99 or even
better, its speed of convergence is too slow.

6.3 Performance of the two algorithms using an optimal
forgetting factor

From the results of Figures 7, 8, 9 and 10, it can easily be
inferred that the Cholesky factorization-based approach
yields the best results when the forgetting factor is var-
ied whereas the SVD-based algorithm performs best if
the forgetting factor is fixed. In order to have a fair per-
formance comparison, the two algorithms need to be
compared under conditions in which they both perform
best. Figures 11 and 12 give the best performance results
of the two algorithms, respectively. As can be seen from

these two figures, at an SNR of 10 dB, the Cholesky-
based DRC algorithm performs slightly better than the
SVD-based RS algorithm without diffusion, whereas both
SVD-based algorithms outperform the Cholesky-based
algorithms at an SNR of 20 dB. However, the RC algorithm
remains computationally less complex than the RS one.
A final choice of either of these two algorithms will have
to be based on a trade-off between their complexity and
performance.

It would be only fair to compare the performance
of these algorithms with the original batch processing
algorithms from [11] and [15]. At an SNR of 10 dB,
the MSE value for the SVD-based algorithm of [11]
is −25.69 dB while that of the Cholesky-based algorithm
from [15] is −17.79 dB. The corresponding numbers
at an SNR of 20 are −31.38 and −18.36 dB, respec-
tively. Comparing these results with the figures, we see
that both recursive algorithms perform similar to their
batch-processing counterparts. Furthermore, the diffu-
sion algorithms perform better than the batch process-
ing algorithms. The comparison results are tabulated in
Table 3.

6.4 Effect of block size
Since it has been stated in [11] and [15] that the block
size can affect the performance of the algorithm, the

Figure 13 MSD at SNR = 20 dB for varying K for RC.
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Figure 14 MSD at SNR = 20 dB for varying K for RC (last 200 runs).

performance of our algorithms is also tested here for
various block sizes. The block size is varied as K =
{5, 8, 10, 15, 20} and the SNR is set to 20 dB. These set-
tings are applied to both algorithms separately. Here it
is important to note that as the size of the data block
increases, the total amount of data required for the same
number of blocks also increases. Figures 13 and 14 show
the results for the RC algorithm and clearly demonstrate
that the algorithm fails badly for K = 5. However, for
the remaining block sizes, the algorithm’s performance

remains almost unaffected by the block size changes. The
convergence speeds are nearly the same (see Figure 13)
and the performance at steady-state is similar as well for
the remaining block sizes, with only a slight difference (see
Figure 14). From Figure 14 it can be inferred that the best
result, in every respect, is achieved when the block size is
just large enough to achieve a full rank input data matrix
(K = 8 in this case), as expected. Thus, it is essential to
estimate a tight upper bound for the size of the unknown
vector in order to achieve good performance. Figures 15

Figure 15 MSD at SNR = 20 dB for varying K for RS.
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Figure 16 MSD at SNR = 20 dB for varying K for RS (last 200 runs).

and 16 show the results for the RS algorithm. Here, the
performance improves gradually with an increase in block
size. However, the speed of convergence is slow for a large
block size (see Figure 15) even though a larger block size
gives better performance at steady-state (see Figure 16).
Again it can be inferred that it is best to keep the block
size reasonably small in order to achieve a good trade
off between performance and speed of convergence, espe-
cially when taking into account the fact that a larger block

size would mean sensing more data for the same number
of blocks.

6.5 Effect of network size
Here the effect of the size of the network on the perfor-
mance of the algorithms is discussed. For this purpose, the
size of the network is varied over the range N = {10 − 50}
while the forgetting factor is kept fixed at λ = 0.9 for the

Figure 17 MSD at SNR = 20 dB for varying network sizes for RC.



Bin Saeed et al. EURASIP Journal on Advances in Signal Processing 2014, 2014:136 Page 16 of 20
http://asp.eurasipjournals.com/content/2014/1/136

Figure 18 MSD at SNR = 20 dB for varying network sizes for RC (last 100 runs).

RS algorithm and made variable for the RC algorithm. The
block size is taken as K = 8. This performance compari-
son is also carried out for both algorithms separately. The
number of neighbors for each node is increased gradu-
ally as the size of the network is increased. Figures 17 and
18 show results for the RC algorithm. The performance is
poor for N = 10 but improves as N increases. The ini-
tial speed of convergence is similar for various network
sizes as can be seen in Figure 17 but, near steady-state,

the networks with large sizes show a slight improve-
ment in performance, as shown in Figure 18. Figures 19
and 20 show the results for the RS algorithm. Here the
trend is slightly different. It can be seen that the initial
speed of convergence improves with an increase in N (see
Figure 19) but the improvement in performance is slightly
smaller near steady-state (see Figure 20). Also, the differ-
ence in performance is smaller for larger networks, which
is as expected.

Figure 19 MSD at SNR = 20 dB for varying network sizes for RS.
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Figure 20 MSD at SNR = 20 dB for varying network sizes for RS (last 100 runs).

6.6 Effect of node malfunction
Finally, it is shown how the performance can be affected
if one or more nodes malfunction. Two different network
sizes are chosen in two different SNR scenarios to show
how performance gets affected by node malfunction or
failure. First, a network of 20 nodes is used and five nodes
are switched off. Here, switching off a node means that it
stops to participate in any further estimation process. The
functioning nodes then re-calibrate the weights for the

remaining neighbors while the weights for the failed nodes
are set to zero. The nodes with the maximum number of
neighbors are switched off to see how seriously the net-
work performance might be affected. Results are shown
for both SNRs, 10 and 20 dB, in Figures 21 and 22 respec-
tively. The network size is then increased to 50 nodes with
about a quarter of the nodes (13) switched off. The cor-
responding results are shown in Figures 23 and 24. The
RC algorithm’s performance is worst affected at SNR = 10

Figure 21 MSD at SNR = 10 dB and N = 20 nodes when five most connected nodes are switched off.
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Figure 22 MSD at SNR = 20 dB and N = 20 nodes when five most connected nodes are switched off.

dB but remains almost unaffected at SNR = 20 dB, with
the small difference in performance getting even smaller
when the network size is increased. Under similar test
conditions as for the RC algorithm, the degradation of the
SVD-based algorithm’s performance was found to be sim-
ilar to that of the RC’s in all test cases. This clearly shows
that the SVD-based algorithm is also strongly dependent
on the connectivity of the nodes. As expected, the over-
all performance improves with an increase in network

size. The effect of switched-off nodes on the performance
of both algorithms, however, is similar when the ratio of
switched-off nodes with maximum numbers of neighbor
nodes to the total number nodes is the same.

7 Conclusion
This work develops blind block recursive least squares
algorithms based on Cholesky factorization and singu-
lar value decomposition (SVD). The algorithms are then

Figure 23 MSD at SNR = 10 dB and N = 50 nodes when 13 most connected nodes are switched off.
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Figure 24 MSD at SNR = 20 dB and N = 50 nodes when 13 most connected nodes are switched off.

used to estimate an unknown vector of interest in a wire-
less sensor network using cooperation between neigh-
boring sensor nodes. Incorporating the algorithms in the
sensor networks creates new diffusion-based algorithms,
which are shown to perform much better than their
non-diffusion-based counterparts. The new algorithms
have been tested using both a variable as well as a
fixed forgetting factor. The two developed algorithms are
named diffusion blind block recursive Cholesky (DRC)
and diffusion blind block recursive SVD (DRS) algo-
rithms. Extensive simulation work comparing the two
algorithms under different scenarios revealed that the
DRS algorithm performs much better than the DRC algo-
rithm but at the cost of a higher computational com-
plexity. Also, of the two algorithms, the DRC algorithm
performs better when the forgetting factor is variable
whereas the DRS algorithm gives better results with a
fixed forgetting factor. In the case of DRS, the value
of the forgetting factor does not effect the overall per-
formance a great deal except for a slight variation
in convergence speed and steady-state performance. It
was also seen that the size of the data block has an
effect on the performance of the two algorithms. The
speed of convergence slows down with an increasing
block size which means an increasing amount of data
to be processed. A block size increase, however, does
not necessarily improve performance. It was found that,
in general, a small block size gives a better perfor-
mance. Therefore, it is essential to estimate a very low
upper bound to the size of the unknown vector so
that the data block size to be used is not unnecessarily
large. Next, it was noticed that an increase in the net-
work size improves performance but the improvement

gradually decreases with an increasing network size.
Moreover, it was shown that switching off some nodes
with the largest neighborhoods can slightly degrade the
performance of the algorithm. Finally at low SNRs, the
Cholesky-based algorithm suffers from a severe degrada-
tion, whereas the SVD-based one only experiences a slight
degradation.
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