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SUMMARY

Much research has been devoted recently to the development of algorithms to utilize the distributed structure
of an ad hoc wireless sensor network for the estimation of a certain parameter of interest. A successful
solution is the algorithm called the diffusion least mean squares algorithm. The algorithm estimates the
parameter of interest by employing cooperation between neighboring sensor nodes within the network.
The present work derives a new algorithm by using the noise constraint that is based on and improves
the diffusion least mean squares algorithm. In this work, first the derivation of the noise constraint-based
algorithm is given. Second, detailed convergence and steady-state analyses are carried out, including
analyses for the case where there is mismatch in the noise variance estimate. Finally, extensive simulations
are carried out to test the robustness of the proposed algorithm under different scenarios, especially the
mismatch scenario. Moreover, the simulation results are found to corroborate the theoretical results very
well. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Ad hoc wireless sensor networks have renewed an interest in distributed computing and opened
several venues for research in the estimation and tracking of parameters of interest in situations
where a robust, scalable, and low cost solution is required. To illustrate the subject matter more
clearly, consider a set of N sensor nodes spread over a geographic area, as shown in Figure 1, with
each node taking sensor measurements at every time instant. The goal is to estimate an unknown
parameter of interest by using these measurements. In a centralized network, each node transmits
its readings to a fusion center for processing. However, this system is prone to center failure.
Furthermore, large amounts of energy and communication resources are often required for the
complete signal processing to take place between the center and the network. This could become
considerable as the distance between the nodes and the center increases [1].

On the other hand, an ad hoc network depends on distributed processing, and the nodes need
only to communicate with their neighbors. The processing takes place at each node. Because no
hierarchical structure is involved, the network is robust to node failure. Extensive research has been
carried out in the area of consensus-based distributed signal processing and resulted in a variety of
algorithms [2].

We begin with a brief overview of these algorithms [3-9], looking at their virtues and limitations
and therefore, justifying our contribution. The first algorithm organizes the network by using a
Hamiltonian cycle [3]. The estimation is carried out by passing the estimate cyclicly from node
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Figure 1. Adaptive network of N nodes.

to node, the estimate being improved with each new set of data per node. This algorithm is termed
incremental least mean squares (LMS) algorithm as it uses the LMS algorithm [10] with incremental
steps within every iteration [3]. These algorithms are heavily dependent on the Hamiltonian cycle
and are prone to node failure, which would mean that a new cycle has to be reestablished and
that becomes a nondeterministic polynomial-time hard problem [11]. A fully distributed algorithm
was later proposed in [4] and termed diffusion LMS (DLMS) algorithm. The neighbor nodes share
their estimates in this algorithm in order the overall performance. A modification incorporated to
this algorithm [5] further improved the performance of the algorithm. Ultimately, this algorithm is
robust to node failure as the network is not dependent on any single node or any cyclic structuring of
the nodes. The authors in [4] introduced a scheme to adapt the combination weights at each iteration
for each node instead of having fixed weights for the shared data. This scheme was further improved
upon in [6]. The performance of the DLMS algorithm improved in this case if more weight is given
to the estimates of the neighbor nodes that are providing more improvement per iteration.

All the previously mentioned algorithms were designed on a nonconstrained optimization
technique. However, the authors in [7] used the constraint that all nodes converge to the same steady-
state estimate to derive the distributed LMS algorithm. This algorithm is unfortunately hierarchical,
thus making it complex and not completely distributed. To remedy this situation, a fully distributed
algorithm using the same constraint was suggested in [8]. Compared with the work in [6], a much
simpler solution was suggested in [9], using a variable step size LMS algorithm. This resulted in the
variable step size DLMS (VSSDLMS) algorithm.

The performance of each node is affected by additive noise. If the noise variance is known at
each node, the performance of the algorithm is likely to improve. Inspired by the noise constraint-
based algorithm in [12], a new algorithm was devised in [13], termed the noise-constrained DLMS
(NCDLMS) algorithm. Preliminary results showed that remarkable improvement in performance at
low computational complexity was achieved using the proposed NCDLMS algorithm.

This work extends that of [13] and investigates in detail the NCDLMS algorithm where in
particular the transient, steady-state, and sensitivity analyses are for the first time reported in this
work. First, the NCDLMS algorithm is derived by rearranging the cost function to incorporate
the noise constraint. Second, complete convergence and steady-state analyses are carried out. The
case where there exists a mismatch in the estimation of noise variance is also included. Also, the
stability of the algorithm is derived. Finally, simulations are carried out for the proposed algorithm
and existing algorithms of similar complexity. The performance of the proposed algorithm is
assessed under different conditions. The theoretical results are found to match the simulation results
remarkably well.

The paper is divided as follows. Section 2 describes the problem statement and briefly introduces
the DLMS algorithm. Section 3 derives the proposed NCDLMS algorithm. Complete convergence
and stability analyses are carried out, including the case of noise variance estimate mismatch, in
Section 4. Simulation results are given in Section 5 followed by a discussion on the results. Finally,
Section 6 concludes the work.

Notation. Boldface letters are used for vectors/matrices and normal font for scalar quantities.
Matrices are defined by capital letters and small letters are used for vectors. The notation (.)7
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stands for transposition for vectors and matrices and expectation operation is denoted by E[.]. Any
mathematical operators that have been used will be defined as they are introduced during the paper.

2. PROBLEM STATEMENT

Consider a network of N sensor nodes deployed over a geographical area for estimating an unknown
parameter vector w’ of size (M x 1), as shown in Figure 1. Each node k has access to a time
realization of a known regressor vector ug (i) of size (1 x M) and a scalar measurement dy (i) that
are related by

de(i) = u )W’ + v (i), 1<k <N, (1)

where v (i) is spatially uncorrelated zero-mean additive white Gaussian noise with variance oik
and i denotes the discrete time index. The measurements, di (i) and ug (i), are used to generate
an estimate wg (i) of the unknown parameter vector w’. By assuming that each node cooperates
only with its neighbors, each node k has access to updates w; (i), from its A, neighbor nodes at
every time instant i, where / € N, in addition to its own estimate, wg (i ). Here, the neighborhood
1#k
of node k is defined as those nodes to which node k is communicating directly and includes
node k itself. Two different schemes have been introduced in the literature for the diffusion algo-
rithm. The adapt-then-combine (ATC) scheme [5] first updates the local estimate by using the
adaptive algorithm, and then, the intermediate estimates from the neighbors are fused together. The
second scheme, called combine-then-adapt [4], reverses the order. It is found that the ATC scheme
outperforms the combine-then-adapt scheme [5], and therefore, this work uses the ATC scheme.
The objective of the adaptive algorithm is to minimize the following global cost function given by

N N
JaW) =Y Jew) = Y [1dk —wmewl’ . @)
k=1 k=1
where w is the estimate of w’. The steepest descent algorithm is given as
N
wi)=w(i — 1)+ 1Y (raukx — Ruxw(i — 1)), 3)
k=1

where rgyx = E [diul | is the cross-correlation between dj and uy, and Ry = E[u] uy] is the
autocorrelation of ug. The recursion defined in (3) requires full knowledge of the statistics of the
entire network. A more practical solution utilizes the distributive nature of the network. The work
in [4] gives a fully distributed solution, which is modified and improved in [5]. By using the ATC
scheme, the DLMS algorithm is given as [5]

Wi (i) = we(i — 1) + preug (i) [de () — e (DHwi (i — 1], “)
W)=Y ¥ (i), Q)
leN)

where W (7) is the intermediate update and c;; is a real nonnegative scalar weight connecting node
k to its neighboring node / € N, where Y ¢ = 1.
leNy

The DLMS algorithm, defined by (4) and (5), uses a fixed step size. Using a constraint would
make the step size in the DLMS algorithm act as a variable step size, for example, the normalized
LMS algorithm [14]. As a result, the algorithm would converge faster and give a lower steady-state
error, which is not the case for the DLMS algorithm. Ultimately, a new algorithm based on the noise
constraint is being presented next.
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3. NOISE-CONSTRAINED DIFFUSION LMS ALGORITHM

From (2), we can write the local cost function for each node k as
Je(w) = B[ lde —uewl ] (©)

where completing the squares and letting E [ul ug | = Ry« gives
Je(w) = [w—wi &, +MMSE, @)

where w is the global estimate, wy is the local estimate at node k, and MMSE represents the terms
that do not include w and can, therefore, be ignored. Incorporating (7) into (2), the global cost
function can be written as

N
Ja(W) = Je(W) + Y Ji(w)
1k

N
= B[ld —wewl” |+ Y Iw-wil,,. ®)
1#k

This model assumes that any node k has access to data across the entire network. However, this is
not a practical assumption as node k has access only to its neighbors. As a result, the cost function is
approximated with data from neighbors being shared at each node. The resulting weighting matrix
for the second term in (8) changes from Ry, ; to a nonnegative constant weighting factor by, where
the subscript /k denotes the connection between node k with its neighbor node / and )" by = 1.

leNk
The approximated cost function looks like
Twe) =B [1dk —wewe |+ Y b we = wi
leENY
17k
=JeW) + > bie [wie —will, )
1eEN
1#k

where the cost function now becomes as no node has access to the data from the entire network. By
assuming that the additive noise variance, 03 o is known, the cost function can be modified using
Lagrange multipliers as follows:

J'Wi) = Jewi) + ) bk Wi = wi > + yBi (Je(wie) — o0 ) — vB7, (10)
leN)
1#k
where y > 0 and the last term is a correction term added because the critical values of B are not
unique (or bounded) and this may present a potential problem for an adaptive filter [12, 15, 16].
The solution for (10) can be obtained from the Robbins—Monro algorithm [12, 15-17]

. . a7 (i)
Wi(i) = Wi (i = 1) = jpe—5——, (11)
Wi
: . 0J 5 (Wi)
Breli +1) = Pre(i) +a— . (12)
P
3.1. Steepest descent solution
Solution of the first partial derivative is given by
i (W)
“owr = 7B RukWie —Taug) +2 > b (wi —w). (13)
Wk lEN}
l#k
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Similarly, the solution of the second partial derivative is

aJ;
% =y (B [l —wewe ”] —02) — 2085, (14)
which results in
Bili +1) = Bi(i) +ay (E [Ide —wmewe ] = 02, ) — 2078 ). (15)

If we replace ay by /2 and then insert the solutions to the partial derivatives into the algorithm,
we obtain the resulting steepest descent solution

wie(i) =we(i — 1) + (1 + yBr(i) (Rugw (i — 1) —rauk)

+ue Y bu(wi (i = 1) —wie(i = 1), (16)
/le;\;(k
Bili +1) = (1 —)Bi() + 5 (B[lde —wewel*| =02 ). am

where vy is a step size different from px. Now, (16) can be written as a two-step process

Wie(@) =wi(i —1) + (1 + yBi (1) Ry Wi — Fauk), (13)
Wi (i) = Wi (i) +ue Y b (W) — Wi (i)
1EN
1#k
=W (i) (1= vk + biku) + v Y bie¥i(0)
leENY
1#k
=Y Vi), (19)
leN
where
1 — v +urbir, | =k
ik = o st Y e =1, Vik, I (20)

Ukbik, I #k IENK

Combining (18) and (19) with (17) results in the steepest descent solution to the noise-constrained
diffusion problem.

3.2. The proposed algorithm

The steepest descent solution requires complete statistical knowledge of the data. For a practical
adaptive solution, we simply replace Ryx, Ryyk, and E [|dk —ukw|2] by their instantaneous
values. Noting that ey (i) = di (i) —ug (i)wg (i — 1), we obtain

Wi (i) =wi (i = 1) + e (14 yB (D) uy, (Dex (i), 1)

wi(i) =Y ¥ (i), (22)
=

Bili +1) = (=) i) + 5 (2D = o2y). (23)

where ¢ are defined in (20).

When compared with the DLMS algorithm, (21) has an extra factor consisting of the Lagrangian
multiplier, which is recursively updated according to (23). Hence, (21)—(23) form the proposed
NCDLMS algorithm.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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4. ANALYSIS OF THE PROPOSED ALGORITHM

To perform the analysis, the whole network needs to be looked at because any node k is being
affected by its neighbors and the neighbors in turn are affected by their respective neighbors.
Therefore, we introduce new terms to study the performance of the network in a global manner.
Similarly, as it was carried out in [4], the local variables are transformed into global variables
as follows:

w(i) = col{iwy(i),...,wy(i)}, V(i) =col{W¥(),...,¥n(i)},
U() = diag{u;(@),...,un (i)}, D =diag{u1lps, ..., unlp},
d(i) =col{dy(i),...,dn (@)}, v(i) = col{vi(@),...,vn (i)}

By using these new variables, a completely new set of equations is formed, representing the entire
network. Starting with the relation between the measurements, we have

d(i) = U)W +v(i), (24)

where w® = Qw® and Q = col{Ips,Ips, ..., Ips) is @ MN x M matrix. Similarly, the update
equations can be remodeled to represent the entire network instead of representing just a single
node as follows:

U(i)=w(i —1)+DIyy +yB@) U () (@A) - U@w (i — 1)), (25)
w(i) =G¥(i), (26)
o

B(i+1)=(1—0l)B(i)+5(5(i)—S), (27)

where G = C ® Ip, C is the N x N weighting matrix, ® is the Kronecker operator,
B(i) = diag{Bilm,..., BnIp} is the diagonal update matrix for the Lagrange multipliers,
E() = diag{ef(i)lpy,...,e3()Ip} is the diagonal matrix for instantaneous error, and
S = diag {olle, e, 0]2\,IM} is the diagonal matrix containing the estimated noise variances for all

nodes. Here, it is assumed that the noise variances have been estimated exactly.

4.1. Mean analysis
To begin with, let us introduce the global weight-error vector

w(i) = w® —w(i). (28)

Because Gw(©@ 2= w©), incorporating the global weight-error vector into (25) and (26), we
obtain

w(i) =G¥(i)
=GwW (i —1) = GD (Iyn + yB(i) UT (i) (U)W (i — 1) + v(i))
=G (Iyn — DU ()UG)) W(i — 1) — GDE)UT (i)v(i). (29)

Taking the expectation on both sides of the aforementioned equation gives
E[Ww(@)] =G Iy~ —D(@)Ry) E[W (@ —1)], (30)

where Ry = E [UTU] is the regressor autocorrelation matrix for the entire network and the matrix
D(@i) =D (Iyn + yB(i)) is assumed to be independent of the regressor matrix as it depends only
on the values from the previous (i — 1) iterations. Also, because the measurement noise is spatially
uncorrelated, the expectation of the second part of the right-hand side of (29) is zero.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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From [5], we see that the diffusion algorithm is stable if the combination weights are restricted to
within the unit circle. However, in this case, stability is also dependent on the Lagrange multipliers.
In this case, the algorithm will be stable if, for each node,

n

[T @ = e 1+ yE[BGD Ru) >0, as n — oo, (31)
i=1

which holds true if

2

, 1<k<N, 32
A1 7EBOD o (Rag) 5 52

0<pg <

where A jax (Ru,k) is the maximum eigenvalue of the autocorrelation matrix R, . The step size limit
is dependent on the stability of the Lagrangian multiplier. When the expectation operator is applied
to (27), the Lagrange multiplier for each node gets updated as follows:

EIBe (i + D] = (1 - ) E[Be()] + 5 (E[¢(1)] - 02,)
= (1—a) BBk ()] + %EMSEk(i), (33)
where
EMSEy (i) = E[e;(i)] — o7 (34)

is the excess mean square error for node k at iteration i, so the choice of the step size depends on
the choice of the parameters « and y. The product of the step size and y decide how much impact
the Larangian multiplier will have on the adaptive algorithm. This product has to be small for the
algorithm to converge. By considering (1 — «) as a forgetting factor here, the value of o needs to be
small so that the forgetting factor value is close to one. Simulation results support this argument.

4.1.1. Effect of noise variance estimate mismatch. The previous analysis assumed perfect noise
variance estimation. However, in a practical system, it is not always possible to have an exact
estimate, and a mismatch can occur. The analysis in this case may be altered slightly to include
the effect of the mismatch. The Lagrangian does not converge as in (32) because of the mismatch.
Taking the expectation of (23), we have

B[k i + D] = (1 - ) BB ()] + %E [e7)—52]
— (1 — ) E[Be ()] + (EMSE () +o0,—674)
=(1-a)E [,Bk,i—l] + B (EMSE (i) + 63,k) ’ (35)

where 62 + % 1s the imperfect estimate of the noise variance for node k and 6 52 -« 1s the noise variance
mlsmatch Thus, at steady-state, the Lagrange multiplier becomes

1
Bi.ss = (EMSEss +a k) (36)

which is simply a summation of the steady-state EMSE and the noise power mismatch. Because the
value of EMSE is reasonably small, the bound on the step size can be approximated by

2
(1 +62, /2) Amax (Ru)

0< g < (37

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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In case of the zero NCDLMS (ZNCDLMS) algorithm, there is no estimate for the noise power,
so the limit can be approximated as

2
(1 +02,/ 2) Amax (Ruk)

0 < ik < : (38)

where the mismatch of the estimate, 65 o is replaced by the actual noise power, 03 K

4.2. Mean square analysis

Taking the weighted norm of (29) and applying the expectation operator yield

E [||\7V (i)||§:] —E [HG (Luy — DHUT ()UG)) Wi — 1) — GDEHUT (1)v(i) H";]
=B [ING-DIEr 56|~ E[IW6-D12rse6ve | — B9 G = DI gurese]

+ B9 G = Dl ourozouvn | + B OLTOZLOVD)]
=E [||€v(i - 1)||§,] +E[vI (LT ()ZLG)v()], (39)
where

L(i) = GD()UT (i) (40)
¥ =GTE2G -G XL()UG) - UT (LT ()ZG + UT ()HLT ())ZTL@G)UG). (41)

Using the data independence assumption [18] and applying the expectation operator directly on
(41), we have

T =G 'EXG -G ZE[LG)UG)] - E[UT ()L ()|ZG + E[UT ()L (i) ZL)UG)]
=GT'2G - GTXGE[DG)E[UT (1)UG)] — E[UT () UM)IE[D()]GTZG
+ E[UT (HLT () ZLGE)UG)], (42)
where E[D(i)] =D (Inn + yE[B())).

4.2.1. Gaussian data. The evaluation of the expectations in (42) is very complex for non-Gaussian
data. Therefore, it is assumed here that the data is Gaussian to evaluate (42). For Gaussian data, the
autocorrelation matrix can be decomposed as Ry = TATT , where A is a diagonal matrix containing
the eigenvalues for the entire network and T is a matrix containing the eigenvectors corresponding
to these eigenvalues. Using this eigenvalue decomposition, we define the following relations:

w(i) =TIWw(i), U@{)=UG)T, G =T7GT,
T =TTXT, 2 =TTS'T, D(i)=TIDG)T =D().
Now using these relations, we rewrite (39) and (42) as
E[INO)IE ] =E[I%G - DIZ |+ B[ OLTOELOvV)] (43)
and
2 =GTEG - GTEGEDOIE [UT()U()] - E[UT ()UG)] E[DG)IGTEG

+E[UT()LT ())ZLG)UG)]. (44)

where L(i) = GD(i)UT (i).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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It can be seen that E [[_JT(i)I_J(i)] = A. Also, using the bvec operator [19], we have 6 =

bvec {)_: } Now, let Ry = Ay ® I denote the noise variance matrix for the entire network, where ©
denotes the block Kronecker product [19]. Hence, the second term of the right-hand side of (43) is

E[v ()L ())ZLG)v(i)] =b" (i)o, (45)

where b(i) = bvec {RyE[D?(i)] A}.
The fourth-order moment E [UT (LT ()ZL@)U( )] remains to be evaluated. Because the
Lagrange multiplier is independent of the regressor data and using the © operator, we obtain

bvec {E [UT () )LT ())EL(i)U@)]} = (E[D() © D)) A (GT © GT) 5, (46)
where we have from [4]
A =diag{A1,As, ..., AN}, (47)
and each matrix Ay is given by
Ap =diag {A1 ® Ak,... ., MAL +2A5 @ Ag,.... Ay ® Ag). (48)
The output of the matrix E [D(i) ® D(i)] can be written as

(E[DG) ©DE)Dix = E[diag {px (1 + yBr(i) Ins @ o1 (1 +yB1(i)) Iy,

bk (L yBe () Iy @ e (14 yBr (i) Ing,
vtk U+ yBe N I @ un (1 + B (i) Ine}]

= B [diag {urpr (1 4+ yBr (@) (1 +yB1(i)) Ins2,
g (L4 yBr(D)* Ty,
cos kN (1 +yBe (@) (1 + yBN (D)) Ipp2}]

= diag {prpr (1 +yE B (D (1 4+ yE[B1()]) T2,
HEE [ (U Y8 () | Lng2,
cos ey (L+YE[Be () (1 + yE[Bn ()]) Iz} (49)

Now applying the bvec operator on the weighting matrix %', we obtain

bvec {Z_J/} =g
= [Iy2n2 — Auny © AE[D()]) — (AE[D()] © Imn)
+ (E[D(i) @ D()]) Al (GT © GT) ff
=F(i)o, (50)

where

F(i) = [[y2y2— (Iyny © AE[D@)])) — (AE[D(@)] © Inn) + (E[D() © D()]) Al (G" 0 GT).

(51)
Then, (43) will look like the following:
E[IW@IZ] = E [IW6 = DIFos | +b7 )3, (52)
and hence, the transient behavior of the network is characterized by (52).
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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4.2.2. Learning behavior. In this section, the learning behavior of the NCDLMS algorithm is
evaluated. Starting with wy = w©@ and Dy = olprn, we have for iteration i + 1

£ — 1) =diag {(E[IW G = DIF] +62, ) e, (BN G = DIF] + 525 ) Tne |
= diag { (E[IW G = DIF] + (1 =) 02, ) I,
(BRG] + (1 —a)02y ) T,

E[B()] = (1 —@) E[B( — )] + 5 — ).

E[B%()]=(1-a)’E[B*( -] +a(l—-a)EBG—D]EG—1) + O’TZ EG - 1)),

E[D@)] =D (Imun +yEB@))]),
E[D?(i)] =D* (Imy +2yE [B()] + y*E [B2(1)]),
F(i) = [Iy2y2 — Iy © AE[D()]) — (AE[D(i)] © Imn)
+(E[D() @ D)) Al (GT ©GT),
b(i) = bvec {RVE[D?(i)] A},
where a = 63,,( / aik is the ratio between the estimated and actual noise power at node k. For

a perfect estimate, this would result in ¢ = 1; for a mismatch, 0 < a < 1; and for the case of
ZNCDLMS, a = 0. Incorporating the aforementioned relations in (52) gives

B[IW)I3] = E[I% G = DIi3os | + b7 )5

2 1

i—1
(ﬁ F<m>)a+LZ=0"T(m)< [1 F<n)) +bT(i>IMN}a. (53)

n=m++1

-

m=0
Now, subtracting the results of iteration i from those of iteration i + 1 and simplifying, we obtain

B[I5o13] =2 [1Iw 0 - niz] + [+

F (@) F@)—-1mN)o

+[F"() (F() —Inw) + b7 () Tun ] 5, (54)
where
i—1
F'(i)= ] Fom), (55)
m=0
i—2 i—1
F'(i) =Y b (m) ( I1 F(n)) +b7 (i) Iy, (56)
m=0 n=m+1
which can be defined iteratively as
FGi+1)=F(@G)F(>), (57
F'(i+1)=F'()FG)+bT (i) Iny. (58)
Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:827-845
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To evaluate the mean square deviation (MSD) and EMSE, we need to define the correspond-
ing weighting matrix for each of them. Taking 6 = (1/N)bvec{Iyn} = q, and n(i) =

(1/N)E [||v'v(i) ||2] for the MSD, we obtain

2

1) =0 1)+ | + [F6) (F@) ~ Xaw) + DT () Taan] @ (59)

F@)FG—Tamn)an

Similarly, by taking & = (1/N)bvec{A} = A and £(i) = (1/N)E[||v‘v(i)||i], the EMSE
behavior is governed by

2

(i) == 1)+ | W +[F/6) (F(@) —Xarn) + DT () Taun ] Ae. (60)

F@)FG)—IpnN)Ae

4.3. Steady-state analysis

From (27), it is seen that the Lagrangian multiplier update for each node is independent of data from
other nodes. Even though the connectivity matrix, G, does not permit the weighting matrix, F(i), to
be evaluated separately for each node, this is not the case for the step size of any node. Therefore,
taking the approach of [12], we first find the misadjustment, given by

Ui Tr {Ryg} yos, (1—a) yiaoy,
My = He o ’ . (61
22— a) (1 +y02, (1—-a) /2)

which leads to the steady-state values for the Lagrange multiplier update and its square for each
node

1
Bi.ss = 5 (EMSEss +(1— a)af’k)
1
=5 (Mka,ik +(1—a) af’k)
Tk
=— Mr+l-a), (62)
2 o 2 " 2
Bic.ss = mﬂk,ss%,k M +1-a)+ 10 —a)? Mg +1-a)”. (63)

Incorporating these relations in (51) to obtain the steady-state weighting matrix as
Fss = [IMZN2 - (IMN O AE [Dss]) - (AE [Dss] ©) IMN)
+ (E[Dys © Dss) A1 (GT ©GT), (64)

where Dy = diag { g (1 + yPr.ss)ln }-
Thus, the steady-state mean square behavior is given by

E I:”V_Vss H%] =E [sts ||12<‘m6:| + bsTsC_y’ (65)
where bgs = RyDZ™ and DZ = diag {12 (1 + ¥Bk.ss)*Im |- Now solving (65), we obtain
E [||v'vss||§] = b7 [I2n2 — Fy] ' . (66)

This equation gives the steady-state performance measure for the entire network. To solve for
steady-state values of MSD and EMSE, we take 0 = q; and 0 = )t;, respectively, as in (59)
and (60). This gives us the steady-state values for MSD and EMSE as follows:

T -1
Nss = bss [IM2N2 - FSS] qﬂ’ (67)
T -1
Css = bl My2n2 — Fel ™' Ag. (68)
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4.4. Complexity analysis

To truly appreciate the improvement gained from the proposed algorithm, we need to see the cost
of this improvement. Because (23) is the only extra equation comparing with the DLMS algorithm,
it is sufficient to see the number of computations in this equation to know the extra cost of the
proposed algorithm. There are two multiplications and two additions in (23). The other extra com-
putation required is the estimation of noise variance, but that operation is performed only once.
Comparing with the improvement in performance gained through the proposed algorithm, the cost
is reasonably low. Hence, the proposed algorithm proves to be a very cost-effective improvement
over the DLMS algorithm.

5. NUMERICAL RESULTS

In this section, several simulation scenarios are considered and discussed to assess the performance
of the proposed NCDLMS algorithm. Results have been conducted for different average signal-to-
noise ratio (SNR) values. The performance measure is the MSD.

First, the proposed algorithm is compared with existing algorithms, which are the no cooper-
ation case, the distributed LMS [8], the DLMS [4], the DLMS with adaptive combiners [6], the
VSSDLMS algorithm [9], and the diffusion recursive least squares (DRLS) [20]. The length of the
unknown parameter vector is taken as M = 4. The size of the network is N = 20. The input
regressor vector is assumed to be white Gaussian with autocorrelation matrix having the same
variance for all nodes. Results are shown for two different values of SNR and communication
range 0.3. The convergence speed is kept similar for all algorithms so that the steady-state MSD
can be compared. Figure 2 reports the performance behavior of the different algorithms at an SNR
of 10 dB. As can be seen from this figure, the performance of the proposed NCDLMS algorithm
comes after that of the DRLS algorithm. The performance of the NCDLMS algorithm improves
better for an SNR of 20 dB as depicted in Figure 3. In both of these figures, when compared
with other algorithms of similar complexity, the improvement in performance of the NCDLMS
algorithm is very significant. Similar performance for the steady-state behavior is obtained by the
proposed NCDLMS algorithm at SNR of 10 and 20 dB as shown, respectively, in Figures 4 and 5.
The DRLS algorithm performs better as expected, but the proposed algorithm is clearly better than
the remaining algorithms, both in convergence speed and steady-state error. Also, diffusion results
in effecting the step size variation of neighboring nodes, and as a result, the steady-state MSD for
all nodes is nearly the same for all cases. This is in contrast with other algorithms for which the
steady-state MSD is effected by the SNR at each node, even when the SNR is high.

NCLMS
DSLMS NCDLMS

DLMSAC VSSDLMS DRLS

MSD (dB)

500 1000 1500 2000
iterations

Figure 2. MSD for 20 nodes at SNR = 10 dB.
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Figure 3. MSD for 20 nodes at SNR = 20 dB.
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Figure 4. MSD at steady-state for 20 nodes at SNR = 10 dB.
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Figure 5. MSD at steady-state for 20 nodes at SNR = 20 dB.
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To test further the convergence behavior of the proposed algorithm, Figure 6 compares the faster
convergence obtained by the proposed algorithm with that of the DLMS algorithm for the same
steady-state error. As can be seen from this figure, the proposed algorithm performs much better
than the DLMS algorithm. This is due to the mechanism embedded in the algorithm that makes it
act as a variable step size algorithm and eventually performs better than the DLMS algorithm.

Next, the robustness of the proposed NCDLMS algorithm is shown when there is a mismatch in
the noise variance estimate. The performance is compared with that of the VSSDLMS algorithm.
Figure 7 shows the comparison for a SNR of 10 dB. As can be seen from the figure, the performance
degrades as the mismatch increases, but the performance is still better than the VSSDLMS
algorithm, the mismatch level for which can be taken to be approximately 45%. The ZNCDLMS
algorithm performs slightly worse than the VSSDLMS algorithm, but its complexity is comparable
with that of the VSSDLMS algorithm, and the performance is justified.

Next, the theoretical analysis of the proposed algorithm ((59) and (60)) as compared with
the simulation results is reported in Figures 8 and 9 for perfect noise variance estimation and
Figures 10 and 11 for a 50% mismatch in noise variance estimation. Here, the plots for (59)
and (60) are compared with simulation plots for the proposed algorithm, averaged over 100 Monte

10}

NCDLMS

MSD (dB)
8

0 1000 2000 3000 4000 5000 6000 7000
iterations

Figure 6. Convergence behavior of NCDLMS and DLMS at SNR = 20 dB.

ZNCDLMS VSSDLMS

MSD (dB)

50% Mismatch 20% Mismatch

No Mismatch

0 200 400 600 800 1000
iterations

Figure 7. MSD for different mismatches at SNR = 10 dB.
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Figure 8. MSD for theory and simulation at SNR = 10 dB.
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Figure 9. MSD for theory and simulation at SNR = 20 dB.
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Figure 10. MSD for theory and simulation at SNR = 10 dB for 50% mismatch.
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Figure 11. MSD for theory and simulation at SNR = 20 dB for 50% mismatch.
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Figure 12. Steady-state MSD for varying N.

Carlo experiments. As can be seen from these figures, the simulation results are corroborating the
theoretical results very well. The value for « = 0.01, whereas y = 20, and the results are shown for
SNR of 10 and 20 dB.

The effect on the performance of the proposed algorithm when the size of the network varies
is reported in Figure 12. An increase in node density improves performance. Furthermore, the
performance of the proposed algorithm at SNR=10 dB is seen to be almost similar to that of
the DLMS algorithm at SNR=20 dB, which shows the tremendous advantage gained through the
proposed algorithm.

An important aspect of working with sensor nodes is the possibility of a node switching off.
In such a case, the network may be required to adapt itself. The diffusion scheme is robust to
such a change, and this scenario has been considered here, and results are shown in Figure 13.
A network of 50 nodes is chosen so that enough nodes can be switched off to study the performance
of the proposed algorithm in this scenario. Two cases are considered. In the first case, 15 nodes are
turned off after 50 iterations, and then, a further 15 nodes are switched off after 300 iterations. In the
second case, 15 nodes are switched off after 250 iterations, and the next 15 nodes are switched off
after 750 iterations. In both cases, the performance degrades initially but recovers to give a similar
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Figure 13. Robustness of algorithm at SNR = 20 dB.
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Figure 14. Steady-state MSD for different values of 1t¢.

performance to the case where there are no nodes being switched off. The difference between
the best and worst case scenarios is only about 2 dB. For the DLMS algorithm, however, the
performance gets much worse when the nodes are switched off. The difference between the best
and worst case scenarios is almost 9 dB, which further enhances the robustness of the proposed
algorithm.

Figure 14 shows a comparison of steady-state performance for the proposed algorithm at different
SNR values with varying initial step size. As can be seen, the initial value has an almost negligible
effect on the steady-state performance of the algorithm, which further enhances the importance of
the proposed algorithm. In comparison, the DLMS algorithm shows worse performance for a large
value of the step size.

Finally, we look at the stability analysis of the algorithm. Here, the autocorrelation matrix, Ry x,
is taken to be an identity matrix. Table I gives results for steady-state MSD for the network when the
value of uy is varied, for k = 3, ync = 0.1, anc = 0.01, and SNR=20 dB. From this table, it can
be seen that the simulations corroborate the theoretical finding for the steady-state MSD. Moreover,
the bound in (32) holds true, that is, 4 is chosen correctly.
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Table I. Comparison of MSD, from simulations

and theory.
SS-MSD SS-MSD
ke simulations equation (67)
1.9 —153 —15.7
1.75 —184 —18.6
1.5 -21.5 —21.5
1 —25.8 —26

SS-MSD, steady-state mean square deviation.

6. CONCLUSION

This work entails a detailed discussion on the newly developed NCDLMS algorithm. Here, complete
derivations of the algorithm by using the ATC diffusion technique are given, where the convergence
and the steady-state analyses are carried out using the assumption of Gaussian data for a closed
form solution. Furthermore, the case for a mismatch in the estimation of noise variance is also
considered. Extensive simulations are carried out under different scenarios to assess the performance
of the proposed algorithm. It was found that the proposed algorithm performs remarkably better than
the existing algorithms with similar complexity. Also, the robustness of the proposed algorithm was
tested for different scenarios. The first one consists of testing it under different levels of mismatches.
Here, the algorithm showed its superiority even when the ZNCDLMS algorithm is compared with
the VSSDLMS algorithm of similar complexity. The second case consists of testing the performance
of the proposed algorithm when random nodes become unoperational during the course of the
estimation process. It is shown that in this scenario, the level of deterioration is minimal when
compared with that of the DLMS algorithm. The last case considers a mismatch in the estimation of
the noise variance, and here too, the simulations report great improvement in performance for the
proposed algorithm. More importantly, here in this work is the corroboration of theoretical results
to simulations where it was found that both agree very well. Finally, the computational complexity
added to the proposed algorithm is justified by its remarkable performance.
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