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A Union Bound on the Error Probability of Binary
Codes Over Block-Fading Channels
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Abstract—Block-fading is a popular channel model that approx-
imates the behavior of different wireless communication systems.
In this paper, a union bound on the error probability of binary-
coded systems over block-fading channels is proposed. The bound
is based on uniform interleaving of the coded sequence prior to
transmission over the channel. The distribution of error bits over
the fading blocks is computed. For a specific distribution pattern,
the pairwise error probability is derived. Block-fading channels
modeled as Rician and Nakagami distributions are studied. We
consider coherent receivers with perfect and imperfect channel
side information (SI) as well as noncoherent receivers employ-
ing square-law combining. Throughout the paper, imperfect SI is
obtained using pilot-aided estimation. A lower bound on the per-
formance of iterative receivers that perform joint decoding and
channel estimation is obtained assuming the receiver knows the
correct data and uses them as pilots. From this, the tradeoff be-
tween channel diversity and channel estimation is investigated and
the optimal channel memory is approximated analytically. Fur-
thermore, the optimal energy allocation for pilot signals is found
for different channel memory lengths.

Index Terms—Block fading, block interference, channel esti-
mation, convolutional codes, interleaving, Nakagami, pilot-aided,
Rayleigh, Rician, union bound.

I. INTRODUCTION

SERIOUS challenge to having good communication qual-
A ity in wireless communication systems is the time-varying
multipath fading environment, which causes the signal to be
attenuated randomly and, consequently, the received signal-to-
noise ratio (SNR) to vary severely. The fading distribution varies
according to the propagation environment. For example, if a
line-of-sight exists between the transmitter and receiver in ad-
dition to the multipath reception, the fading process is modeled
by a Rician distribution [1]. Another popular model for the fad-
ing process is the Nakagami distribution [2], which provides a
family of distributions that are well matched to measurements
under different propagation environments [3], [4].
Error-correcting codes and diversity techniques are standard
approaches to mitigate multipath fading. In these techniques,
an attempt to providing the receiver with independent fading
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realizations of the channel is made. In coded systems, the
channel diversity is defined as the number of independent
fading realizations available to decode a codeword. Typically,
the coded bits are interleaved prior to transmission over the
channel in order to distribute errors resulting from consecutive
deeply faded bits evenly over the codeword. The performance
of coded systems over infinitely interleaved fading channels is
commonly analyzed using the union bound as in [5] and [6].
In [3] and [7], the performance of noncoherent and coherent
diversity systems over multipath Nakagami fading channels
was derived assuming infinite interleaving.

In delay-sensitive applications, infinite interleaving becomes
an impractical assumption. Therefore, channel models that
exhibit memory such as the block-fading channel [8] are used
to model wireless systems including frequency-hopped spread-
spectrum (FH-SS) [9], time-division multiplexing (TDM) sys-
tems, and orthogonal frequency division multiplexing (OFDM).
In this model, a frame consists of blocks of bits that undergo
independent fading, where the fading is constant for signals
within each block. As an effort to optimize codes for block-
fading channels, Leung et al. [10] proposed a class of codes
suitable for block-fading channels referred to as multifrequency
trellis codes. These codes are not practical for block-fading
channels with large number of fading blocks. The perfor-
mance of multifrequency codes was analyzed by Malkamaki
et al. [11]. Also, several trellis and block codes suitable for
block-fading channels with a small number of fading blocks
were presented in [12]. In [13], convolutional codes were
optimized for block-fading channels. The performance of
incremental redundancy convolutional codes over block-fading
channels was derived in [14].

In coherent receivers, channel side information (SI) is needed
for decoding, i.e., the fading phase and amplitude. If the receiver
knows the channel SI perfectly, large channel diversity improves
the system performance. Clearly, this is a hypothetical case only.
In practice, the receiver needs to estimate the channel. In this
case, long channel memory permits better channel estimation.
Therefore, longer channel memory improves the performance
if the frame size is infinite. However, if the frame size is fi-
nite, there exists a fundamental tradeoff between the channel
diversity and channel estimation [15]. As the channel memory
length increases, the channel diversity is reduced, but the chan-
nel estimation becomes more accurate. On the other hand, short
channel memory increases the channel diversity, which enables
the decoder to average out the channel behavior at the cost of
less accurate channel estimation.

In [15], Worthen et al. used the error exponent to find the
optimal channel memory length of a coded system over some
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simple block memory channels. However, a method to analyze
the performance of specific codes over block-fading channels
with arbitrary frame size and channel memory length is needed.
Such a method is crucial in optimizing the channel memory of
a coded system employing practical channel estimation tech-
niques. In this paper, we derive a union bound on the perfor-
mance of binary convolutional codes over block-fading chan-
nels. We assume uniform interleaving of the coded sequence
prior to transmission over the channel. Based on this assump-
tion, the distribution of error bits over the fading blocks is de-
rived and the corresponding pairwise error probability is derived
under different channel ST assumptions. The proposed bound is
used with pilot-aided channel estimation to optimize the chan-
nel memory at which the system should operate. One issue that
determines the performance of pilot-aided channel estimation is
the fraction of energy devoted to the pilot signals. This problem
was investigated for different communication systems (see, for
example, [16]-[19]). In this paper, we investigate analytically
the optimal pilot energy for pilot-aided channel estimation in
block-fading channels.

The paper is organized as follows. In Section II, the coded
system model is described. Then, the union bound on the error
probability of convolutional codes over block-fading channels
is derived in Section III. In Sections IV and V, the pairwise
error probabilities are derived for Rician and Nakagami fading
distributions, respectively, and results are discussed therein. The
main conclusions are discussed in Section VI.

II. SYSTEM MODEL

The general block diagram of a binary coded system over
block-fading channels is shown in Fig. 1. The transmitter con-
sists of a convolutional encoder, a random interleaver, and a
modulator. Time is divided into frames of duration NT sec-
onds, where 7T is the transmission interval of a bit and N is the
number of bits transmitted in a frame. In each time interval of
duration KT, a rate-R?. encoder maps K information bits into
N coded bits, where R. = K/N is the code rate. Each coded
bit is modulated to generate a signal using either binary phase-
shift keying (BPSK) or binary frequency-shift keying (BFSK).
The channel we adopt is a block-fading channel in which each
frame is subject to F' independent fading realizations, resulting
in a block of m = [N/F'] signals being affected by the same
fading realization. If the channel coherence time is longer than
the transmission duration of each block, the channel is reason-
ably assumed to be constant [20]. The coded bits are interleaved
prior to transmission over the channel in order to spread out
burst errors in the decoder, which result from low instantaneous
SNR at the the demodulator output due to fading.

Coherent or noncoherent detection can be employed at the
receiver. In coherent receivers, the matched filter sampled output
at time /7 in the fth fading block is given by

yra =V Eshysy i+ 25y (D

where FE; is the average received signal energy, s;; =
(—1)°t, where c;; is the corresponding coded bit, and zy
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Fig. 1. Structure of a binary coded system.

is an AWGN sample with a complex normal CN (0, Ny) distri-
bution. The coefficient hy is the channel gain in fading block
f modeled as CA(0,1). The channel gain can be written as
hy = ay exp(j6y), where 0 is a uniformly distributed phase
and ay is the amplitude, which is assumed in the paper to have
a Rician or a Nakagami distribution.

The receiver employs maximum likelihood (ML) sequence
decoding which minimizes the frame error probability. In
this rule, the decoder chooses the codeword S = {s;;, f =

L F,l=1,...,m} that maximizes the likelihood func-
tion p(Y |S), where Y = {y;;, f=1,....,F,l=1,...,m}.
If perfect SI is available at the receiver, the decoder chooses the
codeword S that maximizes the metric

F m

> Re{yj hyssa} 2)

f=11=1

m(Y,S) =

where Re{-} represents the real part of a complex number.
Note that the perfect SI is a hypothetical assumption that is
used to predict the best performance of the code. In practice,
the channel is estimated at the receiver as will be discussed in
Section IV-B.

In noncoherent systems, BFSK is used where the carrier fre-
quency of the modulated signal is set to one of two frequencies
according to whether the coded bitis ¢ = 0, 1. For each received
signal, square-law combining [21] is employed, whose outputs
for ¢ = 0, 1 are represented by

rj(cllc vV Esard(cyy,c )cos(Qf)—l—n(I <)
r(f%t /Esazd(csi,c s1n(9f)+nﬁ< 3)

where r](f l() and r(f% ) for ¢ = 0,1 are respectively the cor-
relation of the received signal with the in-phase and quadra-
ture dimensions of the signal corresponding to a coded bit
c. In (3), 0¢ is the unknown phase of the received signals in

block f,d(x,y)=1if z = y and 0(x,y) = 0, otherwise, and

77;1[0) (@, 0)77](0[11) and n(Q are independent random variables
with normal distribution, i.e., N'(0, Ny/2) distribution. The de-

coder chooses the codeword S that maximizes

XY () e

f=11=1
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where R = {r“), fQZC),f—l ,F,l=1,...,m}. Note
that this decoder makes no use of channel SI in decoding, and
is suboptimal with respect to minimizing the frame error prob-

ability.

III. PERFORMANCE ANALYSIS

In this section, a union bound on the bit error probability
of convolutional codes over block-fading channels is derived.
Throughout the paper, the subscripts ¢, u, and b are used to
denote conditional, unconditional, and bit error probabilities,
respectively. For linear convolutional codes with k input bits,
the bit error probability is upper bounded [5] as

N
1
P <y Edj wy P, (d) (5)

d=dmin

where dyi, is the minimum distance of the code, P, (d) is the
unconditional pairwise error probability defined as the prob-
ability of decoding a received sequence as a weight-d code-
word given that the all-zero codeword was transmitted. In
(5), wg = Zf”zl iA; 4 is the number of codewords with out-
put weight d, where A; ; is the number of codewords with
output weight d and input weight 7. The weight distribution
{wa Y d,.., s obtained directly from the weight enumerator of
the code [5].

A. Union Bound for Block-Fading Channels

In block-fading channels, P, (d) in (5) is a function of the
distribution of the d nonzero bits over the F' fading blocks. This
distribution is quantified assuming uniform channel interleaving
of the coded bits over the fading blocks in a frame. Denote
the number of fading blocks with weight v by f, and define
w = min(m, d), then the fading blocks are distributed according
to the pattern f = {f, }/_, if

F:vau d:vaL

v=0 v=1

(6)

Denote by L = F — fy the number of fading blocks with
nonzero weights. Then, P, (d) is determined by averaging over
all possible fading block patterns as

Ly Lo

z’ > szupd

=[d/m] f1=0 f2=0 fuw
} 1<v<w.

)

where

L, = min {

v—1 v—1

thd Zr 17’f7

r=1
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The probability of a fading block pattern for a specific codeword
weight d is computed using combinatorics as

m f1 m f2 m fu
(1) (5) (%)
mE
()

The left factor of py(f) in (9) is the probability of distributing
d nonzero bits over F blocks with f, blocks having v bits for
possible values of v. The right term of p,(f) is the number
of combinations of f = {f,}*_, among the F fading blocks.
Using (7)—(9), the union bound on the bit error probability of
convolutional codes over a block fading channels is found by
substituting (7) in (5).

It should be noted that carefully designed interleavers may
outperform the uniform interleaver. However, analyzing coded
systems with specific interleavers is much more complicated.
Note that the number of summations involved in computing
P, (d) in (7) increases as the channel memory length increases.
This makes the computation of (5) when summing over all
d < N for long channel memory a time consuming task. A good
approximation to the union bound is obtained by truncating (5)
to a small value of dy,,x < IN. This results in an approximation
to the error probability rather than an upper bound. However,
it is well known that the low-weight terms in the union bound
dominate the performance at high SNR values, where the bound
is more useful. For low SNR values, simulations can always
be performed easily to check the performance. However, at
high SNR the bound becomes more accurate because of the
domination of the low-weight terms. Thus the bound truncation

does not affect the result at high SNR values for which the
performance analysis is most important.

F!
Folfil ..

pa(f) = ©))

ful”

B. Pairwise Error Probability

The conditional pairwise error probability P.(d|f) is de-
fined as the probability of decoding a received sequence Y as
a weight-d codeword S given that the all-zero codeword S was
transmitted and conditioned on the channel fading gains and the
fading block pattern f. It is given by

P.(d|f) = Pr(m(Y,S) —m(Y,S) < 0| H, S, f)

where H = {h }]If:l. For a specific receiver, the unconditional
pairwise error probability P, (d | f) is found by substituting the
corresponding decoding metric in (10) and then averaging over
the fading statistics. The rest of the paper is devoted to deriving
expressions for P, (d|f) of coded systems over block-fading
channels with different receivers and fading distributions.

(10)

IV. PAIRWISE ERROR PROBABILITY FOR RICIAN FADING

In this section, we derive the pairwise error probability of
coded systems over Rician block-fading channels. Rician fading
arises if there is a line-of-sight between the transmitter and the
receiver [1]. In this model, the received signal is composed of
two signal-dependent components, namely, the specular and
diffuse components. The specular component is due to the
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line-of-sight reception, whereas the diffuse component results
from multipath reception. In this case, the channel gain in each
fading block h; is modeled as a complex Gaussian variable
with CA/(b,1) distribution, where b represents the specular
component of the channel. Thus the amplitude a; has a Rician
distribution with a normalized density function [6] given by

fa; (@) = 2a(1 + K )exp[-K — a*(1+ K)]

x[0(2a K(1+K)), a>0 (1)

where K = b? is the energy of the specular component, and
Iy(-) is the zero-order modified Bessel function of the first
kind. In this context, K denotes the ratio of the specular com-
ponent energy to the diffuse component energy. When K = 0,
the specular component is zero, resulting in the well-known
Rayleigh fading distribution. In the following, P,(d|f) is
derived for coherent detection with perfect and imperfect SI
available at the receiver. Furthermore, a square-law combining
receiver is considered with Rayleigh fading.

A. Coherent Detection—Perfect SI

Recall that the received signal over a block-fading channel
is given by (1) and the corresponding ML decoding rule is
given by (2). Substituting the metric (2) in (10), the conditional
pairwise error probability for coherent detection with perfect
Sl is given by

L m

P.(d|f)=Pr [ > a; Y Re{ys;} <0/ H,S,f
f=1 =1

12)

The distribution of Re{y,; } conditioned on ay is Gaussian with
mean \/Ears¢,; and variance Ny. Thus, P, (d|f) simplifies to

w fo
Pd|f)=Q| \|2Rem Y v a? (13)

v=1 =1

where v, = E;, /Ny is the SNR per information bit. Note that
the average energy per bit is given by E, = R.E;, where
R, is the code rate. To find the unconditional pairwise error
probability P, (d|f), (13) is averaged over the statistics of
the fading amplitudes in (11). An exact expression of the
pairwise error probability is found using the integral form of the
Q-function, Q(x) = % fo% e(=2*/25in%0) 4o [22], resulting in

P, (d[f)

1
ZEa
s

.S w fo
2 _Rc’yb 2
7| do
[ oo Gy o) o

1/ﬁ( 14K )f
T Jo 1+ K +vR.y,/sin?0

v=1

Kvf,R,. in? 6
X exp | — v/ %/sm' 5 do
1+ K +vR.y/sin” 0

where the product results from the independence of the fading
variables in different fading blocks. Since the integral in (14)

(14)
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Fig. 2. Bit error probability of a rate-1/2 (23,35) convolutional code with
perfect SI and a frame size N = 1024 for channel memory lengths m =
1, 8,16, 32, 64 (solid: approximation using the union bound, dash: simulation).

is definite, its computation is straightforward using standard
numerical integration packages.

Throughout the paper, the union bound was evaluated for
a rate-1/2 (23,35) convolutional code with a frame size of
N = 1024 coded bits. As discussed in Section III-A, the union
bound is truncated to sum over codewords with a distance
dmax < 12 in order to reduce the computational complexity.
The bound is compared to simulation results, in which the chan-
nel interleaver is chosen randomly and is changed every ten
frames to simulate the effect of the uniform interleaver. This re-
sults in the performance of the average-performing interleaver
over block-fading channels. In coherent systems, BPSK signal-
ing is employed, and (14) is used in (7) and (5) to compute the
union bound.

Fig. 2 shows the results for Rayleigh fading channels with
perfect SI and different channel memory lengths. Since sim-
ulating very low error rates is too difficult, we plot simulation
curves down to error rates around P, = 10~¢. However, the ana-
Iytical curves are shown for all SNR values. We observe that the
approximation is very close to the simulation curves for a wide
range of channel memory lengths. Also, the approximation starts
to be loose as the SNR decreases. It is well established that the
union bound diverges at SNR values lower than the cutoff rate of
the channel [23]. However, the value of the analytical results is
more interesting for high SNR values, where simulation is dif-
ficult to conduct. In the rest of the paper, analytical results are
shown for high SNR values to make the presentation more clear.

Fig. 3 shows the SNR required for the convolutional code to
achieve P, = 10~* versus the specular-to-diffuse ratio K of a
Rician fading channel. We observe that increasing the energy of
the line-of-site component of the channel reduces the effect of
the diversity provided by the independent fading blocks. This is
expected, since increasing K causes the channel to become less
random, which reduces the need for diversity at the decoder.
We conclude that when perfect SI is available at the receiver,
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1, (dB)

Fig. 3. SNR required for a rate-1/2 (23, 35) convolutional code to achieve
P, = 10~% versus the specular-to-diffuse ratio K (linear scale) for memory
lengths m = 8,16, 32, 64.

smaller specular-to-diffuse ratio makes the performance more
sensitive to the lack of channel diversity.

B. Coherent Detection—Imperfect SI

For coherent detection with imperfect SI, it is necessary to
estimate the channel SI. This is achieved by transmitting a pilot
signal with energy I, in each fading block. The corresponding
received signal is given by

Yro = VEphs + 21, (15)
The ML estimator for h; is given by hy =y;,/\/E, =
hf + ey, where ey = 2, / E), is the estimation error. The
distribution of e; is CN(0,02), where 02 = Ny/E,. The cor-
relation coefficient between the actual channel gain and its esti-
mate is given by

= E[(hy =b)(hy =b)] 1

= = . (16)
\/Var(hf)Var(fAzf) Vi+a?

In order implement an ML sequence decoding rule, the like-
lihood function of the channel observations (received and pilot
signals) conditioned on the transmitted codeword p(Y, H|S)
should be maximized. In [24], the ML decoding rule was shown
to be difficult to implement in a Viterbi receiver. Therefore, a
suboptimal decoding metric that maximizes the likelihood func-
tion p(Y | H, S) is used. It is given by choosing a codeword S
that maximizes the metric

F m
m(Y,S) = Z Z Re{y} hysri}

f=11=1

a7
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Substituting (17) in (10), the conditional pairwise error proba-
bility for the suboptimal decoder becomes

L m

P.(d|,f) =Pr [ > > Re{yj,hs} <0/H,S,f
f=11=1

(18)

In order to find (18), we need to find the distribution of % ; con-
ditioned on h 1, which is a complex Gaussian random variable
with a mean v/E, s, /E[h | h] and a variance Ny + (1 — p2)E,,
where E[h|h] = u/a(ﬁf —b)+b and o2 = Var(ﬁf) =1+
o2, Thus, the conditional pairwise error probability for the sub-
optimal decoder is given by

N 2
2F, Zle dy |L(hy —b) +b
No + (1 — p?)Eq

Pe(d[f) =Q 19)

where d; is the number of nonzero error bits in fading block
f. Define the normalized complex Gaussian random variable
¢; = (hy —b)/o + b/p with a distribution CA(b/y, 1). Then,
the conditional pairwise error probability simplifies to

2 2R w fz 12
Pc(d|f) — Q \/ 1% R(,’Yb Zq;:l UZzzl |<Z‘

L+ Reyy (1 — pi?) 20

Comparing (13) and (20), we conclude that the pairwise error
probability for the case of imperfect SI is given by (14), with ~,
and K being replaced by 4, = p?v, /(1 + Ry (1 — p?)) and
K /u?, respectively.

Two scenarios can be considered for the channel estimation
using pilot signals with E,, = E,. The first case results from
only pilot estimation (OPE) with an estimation error variance
of 02 = Ny/FE;. The second case considers a lower bound on
the performance of receivers employing iterative joint decoding
and channel estimation. In such receivers, the decoding results
are used to improve the channel estimates, which are used to
improve the decoding results. This process is repeated itera-
tively. In general, the more reliable the decoding results, the
more accurate the channel estimation. A lower bound on the
performance of iterative receivers is obtained if the signals in
each fading block are known with probability one. In this case
they can be considered as pilot signals resulting in an estimation
error of variance 02 = Ny/(mE;). This case is referred to as
correct data estimation (CDE). Similar channel estimation sce-
narios were used in [17] and [18] for channel estimation with
LDPC codes.

In simulating systems with pilot-aided channel estimation,
one coded bit is punctured every m coded bits to account for
the rate reduction resulting from inserting a pilot signal every
m — 1 signals. This affects the whole distance distribution of
the resulting code and may reduce the minimum distance of the
code. The resultant code rate after puncturing is given by

c =

~ R .
R, = e Q1)
m—1
Table I shows the code rates RC and the minimum distances of
the punctured codes for different channel memory lengths. Also,
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TABLE I
RATES, MINIMUM DISTANCES AND PUNCTURING LOCATIONS WITHIN EACH
FADING BLOCK OF THE PUNCTURED RATE—1/2 (23,35)

CONVOLUTIONAL CODE

| m | R, | Puncturing Location | dimin |
4 | 0.667 3 4
8 [0.571 7 5
16 | 0.533 15 6
32 [ 0.516 31 6
64 | 0.508 63 6

- . . ; . ; . i
4 6 8 10 12 14 16 18 20

1, (dB)

Fig. 4. Bit error probability of a rate-1/2 (23,35) convolutional code with
imperfect SI (OPE receiver with E, = E) and a frame size N = 1024 for
channel memory lengths m = 4, 8,16, 32, and 64.

the puncturing pattern is presented in the table. According to
the table, the code rate increases with reduced channel memory
length, which decreases the error correction capability of the
code. Thus, systems with short channel memory are expected
to have more channel diversity at the cost of lower minimum
distance and worse channel estimation quality. On the other
hand, longer channel memory results in more powerful codes,
as well as better channel estimation, at the cost of less channel
diversity.

Note that optimizing the channel memory is under the control
of the system designer. As mentioned in the introduction, the
block-fading model is used frequently to model communication
systems such as FH-SS, TDM, and OFDM systems. In these
systems, the channel memory is under the control of the sys-
tem designer. More specifically, the designer can optimize the
memory length by finding the most appropriate number of hops
that the transmitter should hop within a codeword in FH-SS sys-
tems, and the number of time slots in a TDM frame over which
a codeword is transmitted in TDM systems.

Fig. 4 shows the results for the rate-1/2 (23,35) convolutional
code with imperfect SI with an OPE receiver over Rayleigh
fading channels. Note that the energy of the pilot is taken into
account in the SNR axis. Unlike perfect SI, imperfect SI results
in a clear tradeoff between channel diversity and estimation.
From the figure, the cases of m = 16 and m = 32 are the best
performing systems, where the former becomes better than the

Py 10
107 ... K=10dB . {
107 |
107° &
10—10 R
5 6 8 10 12 14 16
Y, (9B)
Fig. 5. Approximation of the bit error probability of a rate-1/2 (23,35)

convolutional code over a Rician fading channel with K = 1,10 dB, im-
perfect SI (OPE receiver), and a frame size N = 1024 for memory lengths
m = 8,16, 32, and 64.

later for an SNR values exceeding 14 dB. This suggests that the
optimal channel memory length is between m = 16 and m =
32. Also, the case of m = 8 is worse than the case of m = 64
at low SNR, and starts to improve as the SNR increases. This
is because the resulting code for m = 8§ is less powerful than
the code for m = 64 but has larger amount of channel diversity.
Although the case of m = 64 has the best code and channel
estimation quality, it lacks enough channel diversity to perform
better than the other cases. This is expected since the number of
transmitted pilot signals is reduced as the channel memory gets
longer, and hence, the system becomes more energy efficient
and the code become stronger.

Fig. 5 shows the results of imperfect SI with an OPE receiver
over different Rician fading channels. We observe that systems
with long channel memory perform better as the energy of the
specular component of the channel increases. This is because as
K increases, the channel becomes less faded, which reduces the
need for the decoder to average over the statistics of the channel.
Therefore, the channel diversity becomes less crucial, causing
systems with long channel memory to outperform systems with
short memory. Another reason for this is the larger fraction
of energy spent on pilot signals in systems with short channel
memory lengths than in systems with long memory. This is
obvious for the case of K = 10 dB, where the performance of
m = 64 is nearly optimal for most of the SNR values. On the
other hand, the case of m = 8 is the worst everywhere when
K =10 dB, where it outperforms the case of m = 64 when
K = 1dB. From Fig. 3, the optimal channel memory value for
an OPE receiver with E, = E, at a bit error rate of 1074 is
m = 32 for a Rayleigh fading channel; i.e., K = 0, where it
is m = 64 for a Rician channel with K = 10. Also, note that
the case of m = 8 outperforms the case of m = 64 when the
channel is more faded, where the inverse occurs for channels
that are less faded, i.e., larger values of K.
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K=10dB

1, (dB)

Fig. 6. Approximation of the bit error probability of a rate-1/2 (23,35) con-
volutional code over a Rician fading channel with K = 1,10 dB, frame size
N = 1024, and memory lengths m = 8, 32 using perfect and imperfect SI with
E, = E, (solid: m = 8, dash: m = 32).

Fig. 6 shows a comparison of systems employing perfect
SI, OPE, and CDE assumptions with channel memory lengths
m = 8 and m = 32 over Rician fading channels with K = 1, 10
dB. It is clear that as the channel memory gets longer, the SNR
degradation due to imperfection in the channel SI reduces. This
is because long channel memory causes less penalty in the rate
and energy than short channel memory does, as well as an im-
proved channel SI under the CDE assumption. In general, the
optimal memory tends to increase under the CDE assumption
compared to the OPE receiver due to the improved channel es-
timation [24]. Moreover, the SNR loss in OPE receivers with
long channel memory increases with increased energy of the
specular component of the channel. When the channel is esti-
mated using a pilot signal, the channel estimation error adds a
fading component to the channel gain at the decoder. The effect
of this new fading component increases as the energy of the
specular component increases of the channel, which degrades
the performance of OPE receivers more as K increases.

When the energy allocated for the pilot signal is varied, the
performance of an OPE receiver is expected to change as a
function of the channel memory. The energy per information bit
can be written as

(m—-1)Es + E,
mR, '

Thus, for a fixed channel memory, there exists an optimal value
for pilot energy. This is illustrated in Fig. 7, where the SNR
required for the coded system to achieve a bit error probability
of P, = 10~* is shown versus the pilot-to-signal energy ratio
E,/E; in decibels. We observe that as the channel memory
length increases the optimal value for E, /E, increases. This is
expected since longer channel memory permits the allocation
of more energy to the pilot signal. On the other hand, when the
channel memory is short, a wiser usage of the available energy
seems to transmit the information signals rather than to estimate

Ey (22)
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Fig. 7. SNR required for a rate-1/2 (23, 35) convolutional code to achieve
P, = 10~* versus E,/E, for the OPE receiver with E, = E/; and memory
lengths m = 16 and 32.

the channel. We conclude from Fig. 7 that optimizing the pilot
energy results in an SNR gain slightly less than 1 dB over the
case, where £, = E. This SNR gain increases as the channel
memory increases, since longer memory increases the amount
of energy that can be devoted to channel estimation, which
improves the overall performance. Moreover, the optimal pilot
energy is almost independent of the fading nature of the channel,
i.e., independent of the energy of the specular component K of
the channel. This is because the amount of energy available in
each fading block, which can be used in estimating the channel,
is the controlling factor of the optimal pilot energy allocation.
Clearly, this energy is a function of the channel memory length
only. Also, the SNR gain resulting from optimizing the pilot
energy is almost independent of the channel fading behavior.
Same observations were reported in [17]-[19].

C. Noncoherent Detection

In this section, we derive a Chernoff bound on the pairwise
error probability of coded systems employing square-law com-
biner over Rayleigh block-fading channels. Recall that the out-
puts of the square-law combiner and the corresponding decoding
metrics are given by (3) and (4), respectively. Substituting the
metric (4) in (10) yields

F ) )
Pl = [ Yy (|0 )
f=1

2 2
- o) - e ) > 0‘ H,s,f) @3)

where d; is the number of error bits in the fading block f.
The variables {T}I’O), T}Q’O)} and {rl(f’l), rf,g’l)} are zero mean
Gaussian random variables with variances equal to 1/2(F; +
No) and 1/2Ny, respectively. Let \r}c)|2 = |rj(c1’c) 2 + |T§Q’C) |2

for ¢ = 0,1 and define x = Z?Zl df("f‘](cl)‘z - |r((f0)|2). Then,
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Fig. 8. Bit error probability of a rate—% (23, 35) convolutional code with

noncoherent detection and a frame size N = 1024 for channel memory lengths
m =1,8,16, 32, and 64.

the unconditional pairwise error probability is

P,(d|f) = / p(r)dr < B, [eM]. (24)
0

Due to the complicated form of the pdf p(«) [20], the Chernoff

bound was used in (24) to upper bound P, (d | f), where A > 0is

the Chernoff parameter that should be optimized for the tightest

bound. Substituting for  in the Chernoff bound and collecting

terms having the same distance results in

- fo fo
P, (d | f) < H E |:€/\v\rf,(,1)\2:| E [67/\1}‘7"’(‘0)‘2] . (25)
v=1

The Chernoff parameter ) is optimized as in [21], and the result-
ing Chernoff bound for the pairwise error probability simplifies
to

P, (d ‘ f) < H[4Dv(1 - Dv)]fu
v=1

where D, = 1/(2 4 vR.v;). The Chernoff bound approxima-
tion for convolutionally encoded BFSK signals with square-law
combining is shown in Fig. 8. Note that we show the approxi-
mation for high SNR values to avoid curves to overlap resulting
in unclear presentation. We observe that the approximation is
not as close to the simulation curves as in the case of coherent
receivers. This is mainly because of the use of the Chernoff
bounding technique. This makes our approximation not as use-
ful in predicting the error probability of square-law combining.
However, the proposed approximation predicts precisely the
performance loss due to channel memory. Note that the union
bound for the performance of square-law combiner can be eval-
uated more precisely for the case of m = 1, i.e., without the
need for the Chernoff bound [20]. Since the Chernoff bound
predicts the performance loss due to channel memory, it can be
compared with the more precise union bound for m = 1 case in
order to predict the performance of the square-law combiner in
a Rayleigh block-fading environment.

(26)
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Fig.9. SNR required for arate-1/2 (23, 35) convolutional code with perfect SI

to achieve P, = 1072 versus the Nakagami parameter M for memory lengths
m =1,8,16, 32, and 64.

V. PAIRWISE ERROR PROBABILITY FOR NAKAGAMI FADING

In this section, we derive the pairwise error probability of
coded systems over Nakagami block-fading channels. In Nak-
agami block-fading channels, the fading amplitude in each fad-
ing block is Nakagami distributed with a normalized density
function [2] given by

M
2M 2Mfle—Ma2/Q

a = S Ao 9 Z 7MZ .
f /(a') F(M)Q]ua a O 0 5

@7)

where Q = E[a?] = 1, M = Q2 /Var[a] is the fading parameter,
and I'(-) is the Gamma function. As M increases, the fading
becomes less severe and reaches the nonfading scenario when
M — o0,i.e., AWGN channels. The Nakagami distribution cov-
ers a wide range of fading distributions including Rayleigh fad-
ing when M =1, and the single-sided Gaussian distribution
when M = 0.5. In the following, only coherent detection with
perfect SI is considered.

If the channel SI is known perfectly at the receiver, the ML
decoder chooses the codeword S that maximizes the metric in
(2). As in Section IV, the conditional pairwise error probability
is given by (13). Averaging over the statistics of the fading
amplitude in (27), an exact expression of P, (d | f) [25] is found
as

L 5w ) Mf,

ran =1 "1 <1+ M“e) w8
The union bound for Nakagami block-fading channels is com-
puted by substituting (28) in (7). The effect of the fading pa-
rameter on the performance of coherent detection with perfect
SI is shown in Fig. 9. We observe that as the fading parameter
increases, the SNR loss due to channel memory reduces. This
is expected, since as the fading parameter increases, the diver-
sity becomes less important since the channel approaches the
AWGN channel.
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VI. CONCLUSION

In this paper, a union bound on the performance of binary-
coded systems over block-fading channels was proposed. The
bound is based on uniform interleaving of the coded sequence
prior to transmission over the channel and was evaluated for
block-fading channels with different fading distributions. Co-
herent and noncoherent receivers were considered. Results show
that the SNR degradation due to channel memory reduces as the
channel becomes less fading. Moreover, the interesting situa-
tion of imperfect SI obtained from pilot-aided channel estima-
tion was considered. Using the CDE assumption, a lower bound
on the performance of receivers employing iterative decoding
and channel estimation was obtained. Moreover, the tradeoff
between channel estimation and channel diversity was investi-
gated. Results show that the optimal channel memory increases
as the channel becomes less fading. Moreover, it was shown that
the optimal pilot energy allocation is a function of the channel
memory length and does not depend on the channel distribution.
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