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Abstract

A lot of work has been done recently to develop algorithms that utilize the distributed structure of an ad hoc wireless
sensor network to estimate a certain parameter of interest. One such algorithm is called diffusion least-mean squares
(DLMS). This algorithm estimates the parameter of interest using the cooperation between neighboring sensors
within the network. The present work proposes an improvement on the DLMS algorithm by using a variable step-size
LMS (VSSLMS) algorithm. In this work, first, the well-known variants of VSSLMS algorithms are compared with each
other in order to select the most suitable algorithm which provides the best trade-off between performance and
complexity. Second, the detailed convergence and steady-state analyses of the selected VSSLMS algorithm are
performed. Finally, extensive simulations are carried out to test the robustness of the proposed algorithm under
different scenarios. Moreover, the simulation results are found to corroborate the theoretical findings very well.

Keywords: Variable step-size least mean square algorithm; Diffusion least mean square algorithm;
Distributed network

1 Introduction
The advent of ad-hocwireless sensor networks has created
renewed interest in distributed computing and opened up
new avenues for research in the areas of estimation and
tracking of parameters of interest where a robust, scal-
able, and low-cost solution is required. To illustrate this
point clearly, consider a set of N sensor nodes spread over
a wide geographic area, as shown in Figure 1. Each node
takes sensor measurements at every sampling instant. The
goal here is to estimate a certain unknown parameter of
interest using these sensed measurements. In a central-
ized network, all nodes transmit their readings to a fusion
center where the processing takes place. However, this
system is prone to any failure of the fusion center. Fur-
thermore, large amounts of energy and communication
resources may be required for the complete signal pro-
cessing task between the center and the entire network to
be successfully carried out. These resources needed could
become considerable, as the distance between the nodes
and the center increases [1].
An ad hoc network, on the other hand, depends on dis-

tributed processing with the nodes communicating only
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with their neighbors and the processing taking place at the
nodes themselves. As no hierarchical structure is involved,
any node failure would not result in the failure of the
entire network. Extensive research has been done in the
field of consensus-based distributed signal processing and
resulted in a variety of algorithms [2].
In this work, a brief overview of the virtues and lim-

itations of these algorithms [3-10] is conducted, thus
providing the background against which our contribution
is justified. Incremental algorithms organize the network
in a Hamiltonian cycle [3]. The estimation is completed
by passing the estimate from node to node, improving
the accuracy of the estimate with each new set of data
per node. This algorithm is termed the incremental least
mean squares (ILMS) algorithm as it uses the LMS algo-
rithm [11] with incremental steps within each iteration
[3]. A general incremental stochastic gradient descent
algorithm was developed in [4], for which [3] can be
considered a special case. These algorithms are heavily
dependent on the Hamiltonian cycle and in case of a node
failure, a new cycle has to be initiated. The problem of
reconstructing the cycle is non-deterministic polynomial-
time hard [12]. A quantized version of the ILMS algo-
rithm was suggested in [5]. A fully distributed algorithm
was proposed in [6], called diffusion least mean squares
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Figure 1 Adaptive network of N nodes.

(DLMS) algorithm. In the DLMS algorithm, neighbor
nodes share their estimates in order to improve the over-
all performance; see also [7]. Ultimately, this algorithm is
robust to node failure as the network is not dependent
on any single node. On the other hand, the authors in [8]
introduced a scheme to adapt the combination weights
at each iteration for each node instead of having as fixed
weights for the shared data. In this case, the performance
is improved if more weight is given to the estimates of the
neighbor nodes that are providing more improvement per
iteration.
All the previously mentioned algorithms are gener-

ally based on a non-constrained optimization technique,
except in [8] which uses constrained optimization to adapt
the weights only. However, the authors in [9] use the con-
straint that all nodes converge to the same steady-state
estimate to derive the distributed LMS algorithm. This
algorithm is unfortunately hierarchical, thus making it
complex and not completely distributed. To remedy this
situation, a fully distributed algorithm based on the same
constraint was suggested in [10]. The algorithms in [9,10]
have been shown to be robust to inter-sensor noise, a
property not possessed by the diffusion-based algorithms.
However, it has been shown in [7] that diffusion-based
algorithms perform better in general.
All the above-mentioned algorithms use a fixed step-

size. In general, the step-size is kept the same for all nodes.
As a result, the nodes with better signal-to-noise ratio
(SNR) may converge quicker and provide a reasonably
good performance. However, the nodes with poor SNR
will not provide similar performance despite cooperation
from neighboring nodes. As a result, a distributed algo-
rithm may provide improvement in average performance
but individually, some nodes will still not be perform-
ing similarly to the other nodes. One solution for this
problem was provided by [8]. The work in [8] provides
a computationally complex method to improve the per-
formance of the DLMS algorithm. For every iteration,
an error correlation matrix is formed for each node.
A decision is made based on this decision as to the
weights of the neighbors. Thus, the combiner weights

are adapted at every iteration according to the perfor-
mance of the neighbors of each node. Simulation results
from [8] have shown slight improvement in the perfor-
mance, but this has been achieved at the cost of high
computational complexity.
In comparison, a much simpler solution was sug-

gested in [13], using a variable step-size LMS algo-
rithm. This resulted in the variable step-size diffusion
LMS (VSSDLMS) algorithm. Preliminary results showed
remarkable improvement in performance at a reasonably
low computational cost. The idea is to vary the step-size at
each iteration based on the error performance. Each node
will alter its step-size according to its own individual per-
formance. As a result, not only the average performance
improves remarkably but the individual performances of
the nodes also get better.
A different diffusion-based algorithm was proposed in

[14] using the recursive least squares (RLS) algorithm to
obtain the diffusion RLS (DRLS) algorithm. This DRLS
algorithm provided exceptional results in both speed and
performance. Another RLS-based distributed estimation
algorithm has been studied in [15,16]. The latter algo-
rithm is hierarchical in nature, which makes its com-
plexity higher than that of the DRLS algorithm. The
RLS algorithm is inherently far more complex compared
with the LMS algorithm. In this work, it is shown that
despite the LMS algorithm being inferior to the RLS algo-
rithm, using a variable step-size allows the LMS algorithm
to achieve performance very close to that of the RLS
algorithm.
In order to achieve better performance, various other

algorithms have been proposed in the literature, such as in
[17-19]. The works in [17,18] propose distributed Kalman
filtering algorithms that provide efficient solutions for
several applications. A survey of distributed particle filter-
ing is provided in [19]. This work takes a look at several
solutions proposed for nonlinear distributed estimation.
However, the focus of this work is primarily on LMS-
based algorithms, so these algorithms will not be included
in any further discussion.
Our work extends that of [13] and investigates in detail

the performance of the VSSDLMS algorithm. Here, the
most popular variable step-size LMS (VSSLMS) algo-
rithms are first investigated and compared with each
other. Based on the best complexity-performance trade-
off, one variant of the VSSLMS algorithms is chosen
for the proposed algorithm. Next, the incorporation of
the selected VSSLMS algorithm in the diffusion scheme
is described, and complete convergence and steady-state
analyses are carried out. The stability of the algorithm is
also analyzed. Finally, some simulations are carried out
to first determine which of the various selected VSSLMS
algorithms provide the best trade-off between perfor-
mance and complexity, and then to compare the proposed
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algorithm with similar existing algorithms. Note that the
performance of the proposed algorithm is assessed under
different conditions. Interestingly, the theoretical find-
ings are found to corroborate the simulation results very
well. Moreover, a sensitivity analysis is performed on the
proposed algorithm.
The paper is organized as follows. Section 2 describes

the problem statement and briefly introduces the DLMS
algorithm. Section 3 incorporates the VSSLMS algorithm
into the DLMS algorithm, and then complete conver-
gence and stability analyses are carried out. Simulation
results are given in Section 4 followed by a thorough dis-
cussion of the results. Finally, Section 5 concludes the
work.
Notation. Boldface letters are used for vectors/matrices

and normal font for scalar quantities. Matrices are defined
by capital letters and small letters are used for vectors. The
notation (.)T stands for transposition operation for vec-
tors and matrices and expectation operation is denoted
by E[.]. Any other mathematical operators that have
been used will be defined as they are introduced in the
paper.

2 Problem statement
Consider a network of N sensor nodes deployed over a
geographical area for estimating an unknown parameter
vectorwo of size (M×1), as shown in Figure 1. Each node
k has access to a time realization of a known regressor vec-
tor uk(i) of size (1 × M) and a scalar measurement dk(i)
that are related by

dk(i) = uk(i)wo + vk(i), 1 ≤ k ≤ N (1)

where vk(i) is a spatially uncorrelated zero-mean addi-
tive white Gaussian noise with variance σ 2

vk and i denotes
the time index. The measurements, dk(i) and uk(i), are
used to generate an estimate, wk(i) of size (M × 1), of the
unknown vector wo. Assuming that each node cooperates
only with its neighbors, then each node k has access to
updates wl(i), from its Nk neighbor nodes at every time
instant i, where l ∈ Nk

l �=k
, in addition to its own estimate,

wk(i). Two different schemes have been introduced in
the literature for the diffusion algorithm. The adapt-then-
combine (ATC) scheme [7] first updates the local estimate
using the adaptive algorithm used and then the interme-
diate estimates from the neighbors are fused together.
The second scheme, called combine-then-adapt (CTA)
[6], reverses the order. It is found that the ATC scheme
outperforms the CTA scheme [7] and therefore, this work
uses the ATC scheme.
The objective of the adaptive algorithm is to minimize

the following global cost function given by

J(w) =
N∑
k=1

Jk(w) =
N∑
k=1

E
[|dk − ukw|2]. (2)

The steepest descent algorithm is given as

wk(i + 1) = wk(i) + μ

N∑
k=1

(
rdu,k − Ru,kwk(i)

)
, (3)

where rdu,k = E
[
dkuTk

]
is the cross-correlation between

dk and uk , Ru,k = E
[
uTk uk

]
is the auto-correlation of

uk , and μ is the step-size. The recursion defined in (3)
requires full knowledge of the statistics of the entire net-
work. A more practical solution utilizes the distributive
nature of the network. The work in [6] gives a fully dis-
tributed solution, which has been modified and improved
in [7]. The update equation is divided into two steps.
The first step performs the adaptation, while the second
step combines the intermediate updates from neighbor-
ing nodes. The resulting scheme is called adapt-then-
combine or ATC. Using the ATC scheme, the diffusion
LMS algorithm is given as

�k(i + 1) = wk(i) + μkuk(i) [dk(i) − uk(i)wk(i)]
wk(i + 1) =

∑
l∈Nk

clk� l(i + 1), (4)

where �k(i+1) is the intermediate update, μk is the step-
size for node k, and clk is the weight connecting node k
to its neighboring node l ∈ Nk , where Nk includes node
k, and

∑
clk = 1. Further details on the formation of the

weights clk can be found in [6,7].

3 Variable step-size diffusion LMS algorithm
The VSSLMS algorithms showmarked improvement over
the LMS algorithm at a low computational complex-
ity [20-25]. Therefore, this variation is inserted in the
distributed algorithm to inherit the improved perfor-
mance of the VSSLMS algorithm. Different variations
have their own advantages and disadvantages. A com-
plex step-size adaptation algorithm would not be suitable
because of the physical limitations of the sensor node.
As shown in [23], the algorithm proposed by [20] shows
the best performance as well as having low complex-
ity. Therefore, it is well suited for this application. A
further comparison of performance of these variants in
the present scenario confirm our choice of the VSSLMS
algorithm.
The proposed algorithm simply incorporates the

VSSLMS algorithm into the diffusion scheme given by
(4). Using a VSSLMS algorithm, the step-size will also
become a variable in this system of equations defining
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the proposed distributed algorithm. Then the VSSDLMS
algorithm is governed by the following:

�k(i + 1) = wk(i) + μk(i)uk(i) (dk (i) − uk(i)wk(i)) ,
μk(i + 1) = f [μk(i)] ,
wk(i + 1) =

∑
l∈Nk

clk� l(i + 1), (5)

where f [μk(i)] is the step-size adaptation function that is
defined using the VSSLMS adaptation given in [20] where
the update equation is given by

μk(i + 1) = αμk(i) + γ (dk (i) − uk(i)wk(i))2

= αμk(i) + γ e2k (i) ,
(6)

where ek (i) = dk (i) − uk(i)wk(i), 0 < α < 1 and γ > 0.
Since nodes exchange data amongst themselves, their

current update will then be affected by the weighted aver-
age of the previous estimates. Therefore, to account for
this inter-node dependence, it is suitable to study the
performance of the whole network. Hence, some new
variables need to be introduced and the local ones are
transformed into global variables as follows:

w(i) = col {w1(i), . . . ,wN (i)} ,
�(i) = col {�1(i), . . . ,�N (i)} ,
U(i) = diag {u1(i), . . . ,uN (i)} ,
D(i) = diag {μ1(i)IM, . . . ,μN (i)IM} ,
d(i) = col {d1(i), . . . , dN (i)} ,
v(i) = col {v1(i), . . . , vN (i)} .

From these new variables, a completely new set of
equations representing the entire network is formed,
starting with the relation between the measurements

d(i) = U(i)w(o) + v(i), (7)

where w(o) = Qwo, and Q = col {IM, IM, . . . , IM} is a
MN × M matrix. Similarly, the update equations can be
remodeled to represent the entire network

�(i + 1) = w(i) + D(i)UT(i) (d(i) − U(i)w(i)) ,
D(i + 1) = αD(i) + γE(i),
w(i + 1) = G�(i + 1),

(8)

whereG = C⊗IM;C is anN×N weighting matrix, where
{C}lk = clk ; ⊗ is the Kronecker product; D(i) is the diag-
onal step-size matrix; and the error energy matrix, E(i), is
given by

E(i) = diag
{
e21 (i) IM, e22 (i) IM, . . . , e2N (i) IM

}
. (9)

Considering the above set of equations, the mean and
mean-square analyses and the steady-state behavior of
the VSSDLMS algorithm are carried out as shown next.
The mean analysis considers the stability of the algo-
rithm and derives a bound for the step-size which would
guarantee convergence. The mean-square analysis also
derives transient and steady-state expressions for the
mean square deviation (MSD) and the excess mean square
error (EMSE). The MSD is defined as the error in the esti-
mate of the unknown vector. The weight-error vector for
node k is given by

w̃k(i) = wo − wk(i), (10)

then the MSD can be simply defined as

MSD = E
[
‖w̃k(i)‖2

]
= E

[∥∥wo − wk(i)
∥∥2] . (11)

Similarly, the EMSE is derived from the error equation
as follows:

EMSE=E
[|ek(i)|2] − σ 2

vk =E
[|dk(i) − uk(i)wk(i)|2

]−σ 2
vk ,

which can be solved further to get the following expres-
sion for the EMSE:

EMSE = E
[
‖w̃k(i)‖2Rk

]
, (12)

where Rk is the autocorrelation matrix for node k.

3.1 Mean analysis
To begin with, let us introduce the global weight-error
vector defined in [6,26] as

w̃(i) = w(o) − w(i). (13)

Since Gw(o) �= w(o), by incorporating the global weight-
error vector into (8), we get

w̃(i + 1) = G�̃(i + 1)

= Gw̃(i) − GD(i)UT(i) (U(i)w̃(i) + v(i))

= G
(
IMN −D(i)UT(i)U(i)

)
w̃(i)−GD(i)UT(i)v(i).

(14)

Here we use the assumption that the step-size matrix
D(i) is independent of the regressor matrix U(i) [20].
Accordingly, for small values of γ in (6), the following
relation holds true asymptotically

E
[
D(i)UT(i)U(i)

]
≈ E [D(i)] E

[
UT(i)U(i)

]
, (15)
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where E
[
UT(i)U(i)

] = RU is the auto-correklation matrix
of U(i), and taking the expectation on both sides of (14)
gives

E
[
w̃(i + 1)

] = G (IMN − E [D(i)]RU)E
[
w̃(i)

]
, (16)

where the expectation of the second term of the right-
hand side of (14) is 0 since the measurement noise is
spatially uncorrelated with the regressor and zero-mean,
as explained earlier.
From (16), we see that for stability in the mean we must

have |λmax(GB)| < 1, where B = (IMN − E [D(i)]RU).
Since G comes from C and we know that ‖GB‖2 ≤
‖G‖2 . ‖B‖2, we can safely infer that

|λmax(GB)| ≤ ‖C‖2 . |λmax(B)| . (17)

Since there is already a condition that ‖C‖2 = 1 and
for noncooperative schemes, we have (G = IMN ), we can
safely conclude that

|λmax(GB)| ≤ |λmax(B)| . (18)

So we can see that the cooperation mode only enhances
the stability of the system (for further details, refer to
[6,7]). Since stability is also dependent on the step-size,
then the algorithm will be stable in the mean if

n∏
i=0

(
I − E [μk(i)]Ru,k

) → 0, as n → ∞ (19)

which holds true if the mean of the step-size is governed
by

0 < E [μk(i)] <
2

λmax
(
Ru,k

) , 1 ≤ k ≤ N , (20)

where λmax
(
Ru,k

)
is the maximum eigenvalue of the auto-

correlation matrix Ru,k . This scenario is different from
that of the fixed step-size as in this case where the system
is stable only when the mean of the step-size is within the
limits defined by (20).

3.2 Mean-square analysis
In this section, the mean-square analysis of the VSS-
DLMS algorithm is investigated. Here, the weighted norm
has been used instead of the regular norm. The motiva-
tion behind using a weighted norm stems from the fact
that even though the MSD does not require a weighted
norm, the evaluation of the EMSE depends on a weighted
norm. In order to accommodate both these measures,
a general analysis is conducted using a weighted norm,
where a weighting matrix is replaced by an identity matrix
for the case of MSD, where a weighting matrix is not
required [26].

We take the weighted norm of (14) and then apply the
expectation operator to both of its sides. This yields the
following:

E
[
‖w̃(i + 1)‖2�

]
= E

[∥∥∥G (
IMN − D(i)UT(i)U(i)

)
w̃(i)

− GD(i)UT(i)v(i)
∥∥∥2

�

]

= E
[
‖w̃(i)‖2GT�G

]
−E

[
‖w̃(i)‖2GT�Y(i)U(i)

]

−E
[
‖w̃(i)‖2UT(i)YT(i)�G

]

+E
[
‖w̃(i)‖2UT(i)YT(i)�Y(i)U(i)

]

+E
[
vT(i)YT(i)�Y(i)v(i)

]

= E
[
‖w̃(i)‖2

�̂

]
+E

[
vT(i)YT(i)�Y(i)v(i)

]
,

(21)

where

Y(i) = GD(i)UT(i) (22)
�̂ = GT�G − GT�Y(i)U(i) − UT(i)YT(i)�G

+ UT(i)YT(i)�Y(i)U(i).
(23)

Using the data independence assumption [26] and
applying the expectation operator gives

E
[
�̂

]
= GT�G−GT�E [Y(i)U(i)]−E

[
UT(i)YT(i)

]
�G

+E
[
UT(i)YT(i)�Y(i)U(i)

]
= GT�G − GT�GE [D(i)] E

[
UT(i)U(i)

]
−E

[
UT(i)U(i)

]
E [D(i)]GT�G

+E
[
UT(i)YT(i)�Y(i)U(i)

]
. (24)

For ease of notation, we denote E
[
�̂

]
= �′ for the

remaining analysis.

3.2.1 Mean-square analysis for Gaussian data
The evaluation of the expectations in (24) is quite tedious
for non-Gaussian data. Therefore, it is assumed here that
the data is Gaussian in order to evaluate (24). The auto-
correlation matrix can be decomposed as RU = T�TT,
where � is a diagonal matrix containing the eigenvalues
for the entire network and T is a matrix containing the
eigenvectors corresponding to these eigenvalues. Using
this eigenvalue decomposition, we define the following
relations
w̄(i) = TTw̃(i) Ū(i) = U(i)T Ḡ = TTGT

�̄ = TT�T �̄
′ = TT�′T D̄(i) = TTD(i)T=D(i),
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where the input regressors are considered independent
of each other at each node and the step-size matrix
D(i) is block-diagonal, so it does not transform since
TTT = I. Using these relations, (21) and (24) can be
rewritten, respectively, as

E
[
‖w̄(i + 1)‖2

�̄

]
=E

[
‖w̄(i)‖2

�̄
′
]
+E

[
vT(i)ȲT(i)�̄Ȳ(i)v(i)

]
,

(25)

and

�̄
′ = ḠT�̄Ḡ − ḠT�̄ḠE [D(i)] E

[
ŪT(i)Ū(i)

]
−E

[
ŪT(i)Ū(i)

]
E [D(i)] ḠT�̄Ḡ

+E
[
ŪT(i)Ȳ(i)�̄Ȳ(i)Ū(i)

]
, (26)

where Ȳ(i) = ḠD(i)ŪT(i).
It can be seen that E

[
ŪT(i)Ū(i)

] = �. Also, using
the bvec operator [27], we have σ̄ = bvec

{
�̄

}
, where

the bvec operator divides the matrix into smaller blocks
and then applies the vec operator to each of the smaller
blocks. Now, let Rv = �v � IM denote the block diago-
nal noise covariance matrix for the entire network, where
� denotes the block Kronecker product [27] and �v is
a diagonal noise variance matrix for the network. Hence,
the second term of the right-hand side of (25) is

E
[
vT(i)ȲT(i)�̄Ȳ(i)v(i)

]
= bT(i)σ̄ , (27)

where b(i) = bvec
{
RvE

[
D2(i)

]
�

}
.

The fourth-order moment E
[
ŪT(i)ȲT(i)�̄Ȳ(i)Ū(i)

]
in

(26) remains to be evaluated. Using the step-size indepen-
dence assumption and the � operator, we get

bvec
{
E

[
ŪT(i)ȲT(i)�̄Ȳ(i)Ū(i)

]}
= (E [D(i) � D(i)])

× A
(
GT � GT

)
σ̄ ,

(28)

where we have from [6]

A = diag {A1,A2, . . . ,AN } , (29)

and each matrix Ak is given by

Ak =diag
{
�1 ⊗ �k , . . . , λkλTk +2�k ⊗ �k , . . . ,�N ⊗ �k

}
,

(30)

where �k defines the diagonal eigenvalue matrix and λk is
the eigenvalue vector for node k.

The output of the matrix E [D(i) � D(i)] can be written
as

(E [D(i) � D(i)])kk = E
[
diag {μk(i)IM ⊗ μ1(i)IM, . . . ,
μk(i)IM ⊗ μk(i)IM, . . . ,
μk(i)IM ⊗ μN (i)IM}]

= E
[
diag

{
μk(i)μ1(i)IM2 , . . . ,

μ2
k(i)IM2 , . . . ,μk(i)μN (i)IM2

}]
= diag

{
E [μk (i)] E [μ1 (i)] IM2 , . . . ,
E

[
μ2
k (i)

]
IM2 , . . . ,

E [μk (i)] E [μN (i)] IM2
}
.
(31)

Now applying the bvec operator to the weighting matrix
�̄

′ using the relation bvec
{
�̄

′} = σ̄ ′, where we can get
back the original �̄′ through bvec

{
σ̄ ′} = �̄

′, we get

bvec
{
�̄

′} = σ̄ = [
IM2N2 − (IMN � �E [D(i)])

− (�E [D(i)] � IMN )

+ (E [D(i) � D(i)])A]
(
GT � GT

)
σ̄

= F(i)σ̄ ,
(32)

where

F(i) = [
IM2N2−(IMN � �E [D (i)])−(�E [D (i)] � IMN )

+ (E [D (i) � D (i)])A]
(
GT � GT

)
. (33)

Then (21) will take on the following form:

E
[‖w̄(i + 1)‖2σ̄

] = E
[
‖w̄(i)‖2F(i)σ̄

]
+ bT(i)σ̄ , (34)

which characterizes the transient behavior of the network.
Although (34) does not explicitly show the effect of the
variable step (VSS) algorithm on the network’s perfor-
mance, this effect is in fact subsumed in the weighting
matrix, F(i) which varies for each iteration, unlike in the
fixed step-size LMS algorithm where the analysis shows
that this weighting matrix remains fixed at all iterations.
Also, (33) clearly shows the effect of the VSS algorithm on
the performance of the algorithm through the presence of
the diagonal step-size matrix D(i).

3.2.2 Learning behavior of the proposed algorithm
In this section, the learning behavior (which shows
how the algorithm evolves with time) of the VSSDLMS
algorithm is evaluated. Starting with w̄0 = w(o) and D0=
μ0IMN , we have for iteration (i + 1)

E (i − 1) = diag
{(
E

[‖w̄ (i − 1)‖2λ
] + σ 2

v,1
)
IM, . . . ,(

E
[‖w̄ (i − 1)‖2λ

] + σ 2
v,N

)
IM

} (35)
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E [D(i)] = αE [D (i − 1)] + γE (i − 1) (36)

E
[
D2(i)

] = α2E
[
D2 (i − 1)

] + 2αγE (i − 1)
+ γ 2E2 (i − 1)

(37)

F(i) = [
IM2N2−(IMN � �E [D (i)])

−(�E [D (i)] � IMN )

+(E [D (i) � D (i)])A]
(
GT � GT

) (38)

b(i) = bvec
{
RvE

[
D2(i)

]
�

}
; (39)

then incorporating the above relations in (34) gives

E
[‖w̄(i + 1)‖2σ̄

] = E
[
‖w̄(i)‖2F(i)σ̄

]
+ bT(i)σ̄

=
∥∥∥w̄(o)

∥∥∥2( i∏
m=0

F(m)

)
σ̄

+
[ i−1∑
m=0

bT(m)

( i∏
n=m+1

F(n)

)

+ bT(i)IMN

]
σ̄ .

(40)

Now, after subtracting the results of iteration i from those
of iteration (i + 1) and simplifying them, we get

E
[‖w̄(i + 1)‖2σ̄

] = E
[‖w̄(i)‖2σ̄

] +
∥∥∥w̄(o)

∥∥∥2
F′(i)(F(i)−IMN )σ̄

+
[
F′′(i) (F(i) − IMN ) + bT(i)IMN

]
σ̄ ,

(41)

where

F′(i) =
i−1∏
m=0

F(m), (42)

F′′(i) =
i−2∑
m=0

bT(m)

( i−1∏
n=m+1

F(n)

)
+ bT(i)IMN , (43)

which can be defined iteratively as

F′(i + 1) = F′(i)F(i), (44)

F′′(i + 1) = F′′(i)F(i) + bT(i)IMN . (45)

In order to evaluate the MSD and EMSE, we need to
define the corresponding weighting matrix for each of
them. Taking σ̄ = (1/N) bvec {IMN } = qη and η(i) =
(1/N)E

[‖w̄(i)‖2] for the MSD, we get

η (i) = η (i − 1) +
∥∥∥w̄(o)

∥∥∥2
F′(i)(F(i)−IMN )qη

+
[
F′′(i) (F(i) − IMN ) + bT(i)IMN

]
qη.

(46)

Similarly, taking σ̄ = (1/N) bvec {�} = λζ and ζ (i) =
(1/N)E

[‖w̄(i)‖2�
]
, the EMSE behavior is governed by

ζ (i) = ζ (i − 1) +
∥∥∥w̄(o)

∥∥∥2
F′(i)(F(i)−IMN )λζ

+
[
F′′(i) (F(i) − IMN ) + bT(i)IMN

]
λζ .

(47)

The relations in (46) and (47) govern the transient
behavior of the MSD and EMSE of the proposed algo-
rithm. These relations show how the effect on the pro-
posed algorithm’s transient behavior of the weighting
matrix varies from one iteration to the next as the weight-
ing matrix itself varies at each iteration. This is not the
case in the simple fixed step-size DLMS in [6] where the
weighting matrix remains constant for all iterations. Since
the weighting matrix depends on the step-size matrix,
which becomes very small asymptotically, then both the
norm and influence of the weighting matrix also become
asymptotically small. From the above relations, it is seen
that both the MSD and EMSE become very small at
steady-state because the weighting matrix itself becomes
small at steady-state and these relations will then depend
only on the product of the weighting matrices at each
iteration.

3.3 Steady-state analysis
From the second relation in (8), it is seen that the step-
size for each node is independent of the data received
from other nodes. Even though the connectivity matrix,
G, does not permit the weighting matrix, F(i), to be eval-
uated separately for each node, this is not the case for
the determination of the step-size at any node. Here, we
define the misadjustment as the ratio of the EMSE to the
minimum mean square error. The misadjustment value is
used in determining the steady-state performance of the
algorithm [11]. Therefore, taking the approach of [20], we
first find the misadjustment, as given by

Mk =
1 −

[
1 − 2 (3−α)γ σ 2

v,k
1−α2 tr (�k)

]1/2

1 +
[
1 − 2 (3−α)γ σ 2

v,k
1−α2 tr (�k)

]1/2 . (48)

Then solving (36) and (37) along with (48) leads to the
steady-state values for the step-size and its square for each
node

μss,k = γ σ 2
v,k (1 + Mk)

1 − α
, (49)

μ2
ss,k = 2αγμss,kσ 2

v,k (1 + Mk) + γ 2σ 4
v,k (1 + Mk)

2

1 − α2 . (50)



Bin Saeed et al. EURASIP Journal on Advances in Signal Processing 2013, 2013:135 Page 8 of 14
http://asp.eurasipjournals.com/content/2013/1/135

0 500 1000 1500 2000
−70

−60

−50

−40

−30

−20

−10

0

iterations

M
S

D
 (

dB
)

Mathews [22]

Mayyas [19] Costa [20] Kwong [18]

Figure 2MSD for various VSSLMS algorithms applied to the diffusion scheme.

Incorporating these two steady-state relations in (33)
yields the steady-state weighting matrix as

Fss = [
IM2N2 − (IMN � 
E [Dss]) − (
E [Dss] � IMN )

+ (E [Dss � Dss])A]
(
GT � GT

)
, (51)

where Dss = diag
{
μss,kIM

}
.

Thus, the steady-state mean-square behavior is given by

E
[‖w̄ss‖2σ

] = E
[‖w̄ss‖2Fssσ

] + bTssσ , (52)

where bss = RvD2
ss� and D2

ss = diag
{
μ2
ss,kIM

}
. Now

solving (52), we get

E
[‖w̄ss‖2σ

] = bTss
[
IM2N2 − Fss

]−1
σ . (53)

This equation gives the steady-state performance mea-
sure for the entire network. In order to solve for the
steady-state values of MSD and EMSE, we take σ̄ = qη
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Figure 3 Steady-state MSD values for varying values of α.
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Figure 4 Steady-state MSD values for varying values of γ .

and σ̄ = λζ , respectively, as in (46) and (47). This gives us
the steady-state values for MSD and EMSE as follows:

ηss = bTss
[
IM2N2 − Fss

]−1 qη, (54)

ζss = bTss
[
IM2N2 − Fss

]−1
λζ . (55)

The above two steady-state relationships depend on the
steady-state weighting matrix which becomes very small

at steady-state, as explained before. As a result, the steady-
state results for the proposed algorithms become very
small compared to those for the fixed step-size DLMS
algorithm.

4 Numerical results
In this section, several simulation scenarios are consid-
ered and discussed to assess the performance of the pro-
posed VSSDLMS algorithm. Results have been conducted
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Figure 5 Comparison with the DLMS algorithm having a high step-size.
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Figure 6 Comparison with the DLMS algorithm having a low step-size.

for different average SNR values. The performance mea-
sure used throughout these simulations is the MSD. The
length of the unknown vector is taken as M = 4. The
size of the network is N = 20 nodes. The sensors are
randomly placed in an area of 1 unit square. The input
regressor vector is assumed to be white Gaussian with
auto-correlation matrix having the same variance for all
nodes. Results averaged over 100 experiments are shown
for the SNR value of 20 dB, a normalized communication
range of 0.3, and a Gaussian environment.

First, the discussed that VSSLMS algorithms are com-
pared with each other for the case of SNR 20 dB and the
results of this comparison are reported in Figure 2. As
can be depicted from Figure 2, the algorithm of [20] per-
forms the best and is therefore chosen for our proposed
VSSDLMS algorithm.
The sensitivity analysis for the selected VSSDLMS algo-

rithm operating in the scenario explained above is dis-
cussed next. Since the VSSDLMS algorithm depends upon
the choice of α and γ , these values are varied to check
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Figure 7MSD for 20 nodes and SNR = 20 dB.
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their effect on the performance of the algorithm. As can
be seen from Figure 3, the performance of the VSSDLMS
algorithm degrades as α gets larger. Similarly, the perfor-
mance of the proposed algorithm improves as γ increases
as depicted in Figure 4. This investigation therefore allows
for a proper choice of α and γ to be made.
In order to show the importance of varying the step-size,

two experiments were run separately. In the first exper-
iment, the DLMS algorithm was simulated with a high

step-size while the initial value for the proposed algorithm
was kept both low and high. In the second experiment,
the step-size of the DLMS algorithm was changed to a low
value. As can be seen from Figures 5 and 6, the proposed
algorithm converges to the same error floor for both sce-
narios. However, the DLMS algorithm converges fast but
at a higher error floor in Figure 5. The low value of step-
size results in the DLMS algorithm converging at the same
error floor as the proposed algorithm but very slowly.
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Figure 9 Theoretical and simulated MSDwith α = 0.95 and γ = 0.001.
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Figure 10 Theoretical and simulated MSDwith α = 0.995 and γ = 0.001.

Thus, the proposed algorithm provides fast convergence
as well as better performance.
Next, the proposed algorithm is compared with some

key existing algorithms, which are the no-cooperation
LMS, the distributed LMS [10], the DLMS [6], the DLMS
with adaptive combiners (DLMSAC) [8] and the DRLS
[14]. Figure 7 reports the performance behavior of these
different algorithms. As can be seen from this figure, the

performance of the proposed VSSDLMS algorithm is
second only that of the DRLS algorithm. However, the
gap in performance is narrow. These results show that
when compared with other algorithms of similar com-
plexity, the VSSDLMS algorithm exhibits a significant
improvement in performance. A similar performance
in the steady-state behavior of the proposed VSSDLMS
algorithm is obtained as shown in Figure 8. As expected,
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Figure 11 Robustness of algorithm at SNR = 20 dB.
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Table 1 Steady-state values for MSD and EMSE

� MSD (dB) EMSE (dB)

Equation (54) Simulations Equation (55) Simulations

IMN −63.7800 −63.2838 −63.7800 −63.2814

Diag
{
σ 2
u,kIM

}
−63.3310 −63.5882 −58.4950 −58.8067

the DRLS algorithm performs better than all other algo-
rithms included in this comparison, but the proposed
algorithm remains second only to the DRLS algorithm
in the steady-state mode. Also, the diffusion process can
be appropriately viewed as an efficient and indirect way
of adjusting the step-size in all neighboring nodes, which
resulted in keeping the steady-state MSD for all nodes
nearly the same for all cases.
Next, the comparison between the results predicted by

the theoretical analysis of the proposed algorithm and the
simulation results is reported in Figures 9 and 10. As can
be seen from these figures, the simulation analysis corrob-
orates the theoretical findings very well. This is done for
a network of 15 nodes with M = 2 and a communication
range of 0.35. Two values for α, namely α = 0.995 and
α = 0.95, are chosen whereas γ = 0.001.
An important aspect of working with sensor nodes is

the possibility of a node switching off. In such a case the
network may be required to adapt itself. The diffusion
scheme is robust to such a change, and this scenario has
been considered here and results are shown in Figure 11.
A network of 50 nodes is chosen so that enough nodes
can be switched off in order to study the performance of
the proposed algorithm in this scenario. Two cases are
considered. In the first case, 15 nodes are turned off after
50 iterations and then a further 15 nodes are switched
off after 300 iterations. In the second case, 15 nodes are
switched off after 250 iterations and the next 15 nodes
are switched off after 750 iterations. In both cases, the
performance degrades initially but recovers to give a sim-
ilar performance to the case where there are no nodes
being switched off. The difference between the best and
worst case scenarios is only about 2 dB. For the DLMS
algorithm, however, the performance is worse off the ear-
lier the nodes are switched off. The difference between the
best and worst case scenarios is almost 9 dB, which further
enhances the robustness of the proposed algorithm.
Finally, the comparison between the theoretical and

simulated steady-state values for the MSD and EMSE
for two different input regressor auto-correlation matri-
ces is given in Table 1. As can be seen from this table, a
close agreement between theory and simulations has been
obtained.

5 Conclusions
The proposed variable step-size diffusion LMS (VSS-
DLMS) algorithm has been discussed in detail. Several

popular VSSLMS algorithms are investigated and the
algorithm providing the best trade-off between complex-
ity and performance is chosen as the proposed VSSDLMS
algorithm. Complete convergence and steady-state anal-
yses have been carried out to assess the performance of
the proposed algorithm. Simulations have been carried
out under different scenarios and with different SNR val-
ues. A sensitivity analysis has been carried out through
extensive simulations. Based on the results of this analysis,
the values for the parameters of the VSSLMS algorithm
were chosen. The proposed algorithm has been compared
with existing algorithms of similar complexity and it has
been shown that the proposed algorithm performed sig-
nificantly better. Theoretical results were also compared
with simulation results and the two were found to be
in close agreement with each other. The proposed algo-
rithm was then tested under different scenarios to assess
its robustness. Finally, a steady-state comparison between
theoretical and simulated results was carried out and tab-
ulated and the results were also found to be in close
agreement with each other.
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