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Abstract: In this paper we derive closed-form expressions for the single-user capacity of selection combining
diversity (SCD) system, taking into account the effect of imperfect channel estimation at the receiver. The
channel considered is a slowly varying spatially independent flat Rayleigh fading channel. The complex channel
estimate and the actual channel are modelled as jointly Gaussian random variables with a correlation that
depends on the estimation quality. Three adaptive transmission schemes are analysed: 1) optimal power and
rate adaptation opra; 2) constant power with optimal rate adaptation ora; and 3) channel inversion with fixed
rate cifr. Furthermore, we derive in this paper analytical results for capacity statistics including moment
generating function (MGF), complementary cumulative distribution function (CDF) and probability density
function (PDF). These statistics are valid for arbitrary number of receive antennas. Our numerical results show
the effect of Gaussian channel estimation error on the achievable spectral efficiency.
1 Introduction
It is well known that information bearing signals transmitted
over wireless channels experience multipath fading that
introduces both random phase shift and amplitude variation
[1], resulting in a serious degradation in communication and
increased bit error rate (BER). Diversity can help effectively
in recovering the signal by providing the receiver with a
multiple faded replica of information bearing signal [1–3].
In particular, selection combining diversity (SCD) has been
the most commonly implemented scheme in wireless
communication systems owing to its simplicity.

Most system designs assume that perfect channel
estimation is available at the receiver. However, in practical
systems, the branch signal-to-noise ratio (SNR) estimates
are usually combined with noise which makes it difficult to
estimate them perfectly. In practice, a diversity branch SNR
estimate can be obtained from either a pilot signal or data
signals (by applying a clairvoyant estimator) [4]. For
example, if a pilot signal is inserted to estimate the
channel, a Gaussian error may arise because of the large
frequency separation or time dispersion. Previous work on
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the analysis of imperfect channel estimation with no
diversity can be found in [5, 6]. In [7], a new closed-form
expression for the probability density function (PDF) of the
SCD combiner output with imperfect channel estimation
was derived, based on the derivation of [4]. The author
focused on deriving the average error probability, where it
was shown that the degradation due to imperfect channel
estimation induces error floors at relatively high SNR values.

Shannon’s benchmark paper [8] established the significance
of channel capacity as the maximum possible rate at which
information can be transmitted over a communication
channel. The Shannon capacity of fading channels under
different assumptions about the knowledge of the channel
information at the transmitter and the receiver was presented
in [9, 10], respectively. In [11], the capacity of a single-user
flat fading channels with perfect channel information at the
transmitter and the receiver was derived for various
adaptation policies, namely, (i) optimal rate and power
adaptation (opra), (ii) optimal rate adaptation and constant
power (ora) and (iii) channel inversion with fixed rate (cifr).
The first scheme requires channel information at the
transmitter and receiver, whereas the second scheme is more
1443
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practical since the transmission power remains constant. The
last scheme is a suboptimal transmission adaptation scheme,
in which the channel side information is used to maintain a
constant received power by inverting the channel fading
[11]. In [12], the general theory developed in [11] was
applied to derive closed-form expressions for the capacity of
Rayleigh fading channels under different adaptive
transmission and diversity combining techniques. Recently,
there has been some work dealing with the channel capacity
of different fading channels employing different adaptive
schemes such as [13, 14], and the references therein. To the
knowledge of the authors, the capacity of SCD receivers
with estimation errors has not been derived.

In this paper, we extend the results in [12] to obtain
closed-form expressions for the single-user capacity of an
SCD system, in the presence of Gaussian channel
estimation errors. In addition, we investigate the capacity
statistics of the SCD scheme, which are valid for an
arbitrary number of receiver antennas including moment
generating function (MGF), cumulative distribution
function (CDF) and PDF. The contributions of this paper
are two-fold. Firstly, we derive closed-form expressions for
the channel capacity of SCD in independent and
identically distributed (i.i.d.) Rayleigh fading channels with
the following adaptive transmission schemes: (i) opra; (ii)
ora with constant transmit power and (iii) cifr. Secondly,
we derive the capacity statistics of an SCD receiver subject
to Rayleigh fading for an arbitrary number of diversity
branches, in the presence of Gaussian estimation errors.

The paper is organised as follows. In Section 2, the system
model used in this paper is discussed. In Section 3, we derive
closed-form expressions for the channel capacity under
different adaptation schemes. The capacity statistics are
derived in Section 4. Results are presented and discussed in
Section 5. The main outcomes of the paper are summarised
in Section 6.

2 System model
Consider an L-branch diversity receiver in slow fading
channels. Assuming perfect timing and no intersymbol
interference (ISI), the received signal on the lth branch
owing to the transmission of a symbol s can be expressed as

rl ¼ gl s þ nl , l ¼ 1, . . . , L (1)

Where gl is a zero-mean complex Gaussian distributed
channel gain, nl is the complex additive white Gaussian
noise (AWGN) sample with a variance of N0/2 and s is
the data symbol taken from a normalised unit-energy signal
set with an average power Ps. An SCD receiver tracks the
amplitude of the channel estimate bgl from the L diversity
branches, and selects the branch yielding the largest fading
amplitude. Thus, if the SCD is employed with equal noise
mean power at all branches, the decision criteria reduce to

m ¼ arg max
l¼1,...,L

{jbgl j} (2)
44
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where bgm is the magnitude of the selected diversity branch
gain at the output of the combiner. The channel estimatebg
and the channel gain g can be accurately approximated as
jointly complex Gaussian [4]. We further assume the actual
channel gains of the L diversity branches are i.i.d. as well as
the channel estimates. The actual channel gain g is related
to the channel estimatebg [4] as follows:

gl ¼ rbgl þ zl (3)

where r is a complex number representing the normalised
correlation between g and bg, and zl is a complex Gaussian
random variable independent of bg with zero mean and a
variance of sz

2. The PDF of the SCD receiver with
imperfect channel estimation is given by [7]

pg(g) ¼
XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt(kþ 1� kr2)

� exp
�g(kþ 1)

gt(kþ 1� kr2)

� �
(4)

where gt ¼ Ps=N0 is the average SNR per receive branch. In
the following, the PDF in (4) is used to derive the channel
capacity with SCD and channel estimation errors.

3 Adaptive capacity policies
In this section, we derive closed-form expressions for
different adaptive schemes with SCD over Rayleigh fading
channels. In the derivation, we will rely on the main results
from [12].

3.1 Power and rate adaptation

Given an average transmit power constraint, the channel
capacity Copra in (b/s) of a fading channel [11, 12] is given by

Copra ¼
B

ln 2

ð1

g0

ln
g

g0

� �
pg(g) dg (5)

where B (in Hz) is the channel bandwidth and g0 is the
optimum cutoff SNR satisfying the following condition:ð1

g0

1

g0

�
1

g

� �
pg(g) dg ¼ 1 (6)

To achieve the capacity in (5), the channel fading level must
be tracked at both transmitter and receiver. The transmitter
has to adapt its power and rate accordingly by allocating
high power levels and transmission rates for good channel
conditions (large g). Since the transmission is suspended
when g , g0, this policy suffers from outage, whose
probability Pout is defined as the probability of no
transmission and is given by

Pout ¼ 1�

ð1

g0

pg(g) dg (7)

However, Copra in (5) can be expressed in terms of the CDF
IET Commun., 2009, Vol. 3, Iss. 9, pp. 1443–1451
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of g by applying integration by-parts resulting in

Copra ln (2)

B
¼ �

ð1

g0

1

g
F (g) dg (8)

Substituting (4) into (6) yields the equality

XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]

�

ð1

g0

1

g0

exp �
g(kþ 1)

gt[kþ 1� kr2]

� �
dg

(

�

ð1

g0

1

g
exp

�g(kþ 1)

gt[kþ 1� kr2]

� �)
dg ¼ 1 (9)

The second term of (9) can be evaluated by making use of
exponential integral function of first order [16] defined as

E1(x) ¼

ð1

1

e�xt

t
dt (10)

Upon substitution of (10) into (9), it is found that the
optimal cutoff SNR, g0, has to satisfy the following equality:

XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1ð Þ

� exp
g0(1þ k)

gt[kþ 1� kr2]

� �
[kþ 1� kr2]gt

1þ kð Þg0

 !"

�E1

(kþ 1)g0

gt[kþ 1� kr2]

� ��
¼ gt[kþ 1� kr2] (11)

To obtain the optimal cutoff SNR, g0 in (11), we follow the
following procedure. Let x ¼ (g0=gt) and define the function
fsc(x) as

fsc(x) ¼
XL�1

k¼0

(�1)k L

kþ 1

� �
� exp

�x(1þ k)

gt[kþ 1� kr2]

� ��

�
[kþ 1� kr2]

(1þ k)x

 !
� E1

(kþ 1)x

gt[kþ 1� kr2]

� �#

�
gt[kþ 1� kr2]

kþ 1
(12)

Making change of variable where m ¼ (kþ 1)=(gt[kþ 1�
kr2]) and applying the first-order derivative to (12) with
respect to x, it yields

f 0sc(x) ¼ �
XL�1

k¼1

L
kþ 1

� �
exp
�mx

m2x2

� �
(13)

Hence, f 0sc(x) , 0, 8x . 0, meaning that f 0sc(x) is a strictly
T Commun., 2009, Vol. 3, Iss. 9, pp. 1443–1451
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decreasing function of x. Also, observing that

lim
x!0þ

fsc(x) ¼ 1 and lim
x!1þ

fsc(x) ¼ �
gt[kþ 1� kr2]

kþ 1

(14)

and noting that, fsc(x) is a continuous function of x, which
leads to a unique positive g0 such that fsc(x) ¼ 0. Therefore
it is concluded that for each gt . 0 there is a unique g0

satisfying (12). Numerical results using MATLAB show
that g0 [ [0, 1] as gt increases, and g0 ! 1 as gt ! 1.

Now, substituting (4) into (5) yields the channel capacity
with the opra scheme as follows

Copra

B
¼
XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]

�

ð1

g0

ln (
g

g0

) exp
�g(kþ 1)

gt[kþ 1� kr2]

� �
dg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I1

(15)

where the integral I1 in the above expression can be computed
using the fact from [12], which states the following:ð1

0

ln x exp(� mx) ¼ E1(m)=m (16)

Inserting (16) into (15) implies that the capacity Copra per
unit bandwidth (in b/s/Hz) can be expressed as

Copra

B
¼
XL�1

k¼0

(�1)k L

kþ 1

� �
E1

(1þ k)g0

gt[kþ 1� kr2]

� �

� exp
�g0(kþ 1)

gt[kþ 1� kr2]

� �
(17)

(1) Asymptotic approximation: We can obtain asymptotic
approximation Copra using the series representation of
exponential integral of first-order function [15] expressed as

E1(x) ¼ �E � ln (x)�
Xþ1

i¼1

(�x)i

i:i!
(18)

where E ¼ 0.5772156659 is the Euler–Mascheroni constant.
Then, the asymptotic approximation C1

opra per unit bandwidth
(in b/s/Hz) can be shown to be

Copra

B
¼
XM�1

k¼0

(�1)k M

kþ 1

� �
�E � ln

(1þ k)

gt[kþ 1� kr2]

� ��

þ
g0(kþ 1)

gt[kþ 1� kr2]

� ��
exp

�g0(kþ 1)

gt[kþ 1� kr2]

� �
(19)

(2) Upper bound: The capacity expression of Copra can be upper
bounded by applying Jensen’s inequality to (5) as follows:

CUB
opra

B
¼ ln (E[g]) (20)

where E[:] is the expectation operator. The expression in (20)
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can be evaluated by averaging it over the PDF in (4) and using
[15], resulting in ð1

0

xne�mx dx ¼ n!m�n�1 (21)

for Re[m] . 0. The resulting expression can be further
simplified to obtain the upper bound for Copra as follows:

CUB
opra

B
¼ ln

XL�1

k¼0

(�1)k

g0

L
kþ 1

� �
gt[kþ 1� kr2]

(kþ 1)

 !
(22)

3.2 Constant transmit power

By adapting the transmission rate to the channel fading
condition with a constant power, the channel capacity Cora

[8, 9] is given by

Cora ¼
B

ln 2
¼

ð1

0

ln (1þ g)pg(g) dg (23)

Substituting (4) into (23) results in

Cora

B
¼
XL�1

k¼0

(� 1)k L

kþ 1

� �
[1�

kr2

kþ 1
]�1

�

ð1

0

ln (1þ g) exp (
�g(kþ 1)

gt[kþ 1� kr2]
) dg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I2

(24)

The integral I2 can be computed conveniently by using the
change of variable x ¼ 1þ g and applying (16), resulting
in a closed-form expression for the capacity Cora per unit
bandwidth (in b/s/Hz) given by

Cora

B
¼
XL�1

k¼0

(�1)k L

kþ 1

� �
exp

(1þ k)

gt[kþ 1� kr2]

� �

� E1

(1þ k)

gt[kþ 1� kr2]

� �
(25)

(1) Asymptotic approximation: Following the same procedure
in Section 3.1, the asymptotic approximation C1

ora per unit
bandwidth (in b/s/Hz) can be computed as

C1
ora

B
¼
XL�1

k¼0

(�1)k L

kþ 1

� �
exp

(1þ k)

gt[kþ 1� kr2]

� �

� �E� ln
(1þ k)g0

gt[kþ 1� kr2]

� �
þ

g(kþ 1)

gt[kþ 1� kr2]

� �� �
(26)

(2) Upper bound: The capacity Cora can be upper bounded by
applying Jensen’s inequality to (5) as follows:

CUB
ora ¼ ln 1þ E[g]ð Þ (27)
46
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and the upper bound can be written as

CUB
ora

B
¼ ln 1þ

XL�1

k¼0

(�1)k L
kþ 1

� �
gt[kþ 1� kr2]

(kþ 1)

 !
(28)

3.3 Channel inversion with fixed rate

We consider two schemes: truncated channel inversion with
fixed rate referred to tifr , and channel inversion with fixed
rate with no truncation, referred to as cifr. Channel
inversion is an adaptive transmission technique whereby the
transmitter uses the channel information feedback by the
receiver in order to invert the channel fading. Accordingly,
the channel appears to the encoder/decoder as a time-
invariant AWGN channel. As a result, channel inversion
suffers a large capacity penalty compared to the previous
adaptation techniques (opra and ora), although it is much
less complex to implement. The channel inversion
technique requires a fixed code design and fixed rate
modulation. In this case, the channel capacity Ccifr can be
derived from the capacity of an AWGN channel with a
received SNR and is given by [11, 12]

Ccifr ¼ B ln 1þ
1Ð1

0 (1=g)pg(g) dg

 !
(29)

The channel capacity with the truncation scheme [12] Ctifr is
given by

Ctifr ¼ B ln 1þ
1Ð1

g0
(1=g)pg(g) dg

 !
1� Pout

� �
(30)

Note that the cutoff SNR g0 can be selected to achieve a
certain value of Pout or to increase Ctifr. From (30) and (4),
we can show that

ð1

g0

1

g
p(g) dg ¼

XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]

�

ð1

g0

1

g
exp

g(kþ 1)

gt[kþ 1� kr2]

� �
dg (31)

Inserting (16) into (31) yields

ð1

g0

1

g
p(g) dg ¼

XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]

� E1

g0(kþ 1)

gt[kþ 1� kr2]

� �
(32)

Based on the cutoff SNR g0, we can obtain Pout, which is
IET Commun., 2009, Vol. 3, Iss. 9, pp. 1443–1451
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given by [7]

Pout ¼

ðg0

0

Pg(g) ¼ 1�
XL�1

k¼0

(�1)k L

kþ 1

� �

�
kþ 1

gt[kþ 1� kr2]
exp

g0(kþ 1)

gt[kþ 1� kr2]

� �
(33)

The capacity Ccifr per unit bandwidth (in b/s/Hz)
can be obtained by inserting (31) and (33) into (30)
resulting in the tifr capacity per unit bandwidth (in b/s/
Hz) as follows (as shown at the bottom of the page)

Using the first series expansion in (18) and substituting it into
(34) yields the asymptotic approximation of C1

tifr expressed as
(as shown at the bottom of the page)

If we set gt ¼ 0, we get the capacity for channel inversion
with fixed rate and without truncation, where in this case
the Pout is equivalent to zero. Inserting (4) into (29), thus,
capacity Ccifr per unit bandwidth (in b/s/Hz) becomes
(as shown at the bottom of the page)

Asymptotic approximation of C1
cifr can be expressed as

(as shown at the bottom of the page)
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4 Capacity statistics
In this section, we focus on deriving the exact analytical
expressions for capacity statistics of SCD over Rayleigh
fading channels, assuming perfect channel knowledge at
the receiver and no channel knowledge at the transmitter
with average input-power constraint. The non-ergodic
capacity of the SCD system is given in (b/s/Hz) by

C ¼ log2 (1þ g) (38)

4.1 Moment generating function

The MGF of the SCD capacity system in the presence of
Gaussian channel estimation errors is given by [16]

FC (t) ¼ E[etC] ¼ E[(1þ g)t=ln (2)] (39)

Expressing the expectation in an integral form over the
distribution of pg(g) we obtain

FC(t) ¼

ð1

0

(1þ g)t=ln (2)pg(g) dg (40)
Ctifr

B

¼ ln 1þ
gt[kþ 1� kr2]PL�1

k¼0 (�1)k L

kþ 1

� �
[kþ 1� kr2]E1

g0(kþ 1)

[kþ 1]

� �
0BBB@

1CCCAXL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]
exp

g0(kþ 1)

gt[kþ 1� kr2]

� �

(34)

C1
tifr

B
¼ ln 1þ

gt[kþ 1� kr2]PL�1
k¼0 (�1)k L

kþ 1

� �
[kþ 1� kr2](�E � log

g0(kþ 1)

[kþ 1]

� �
þ

g0(kþ 1)

[kþ 1]

� �
0BBB@

1CCCA
�
XL�1

k¼0

(�1)k L

kþ 1

� �
kþ 1

gt[kþ 1� kr2]
exp

g0(kþ 1)

gt[kþ 1� kr2]

� �
(35)

Ccifr

B
¼ ln 1þ

gt[kþ 1� kr2]

limg0!0

PL�1
k¼0 (�1)k L

kþ 1

� �
[kþ 1� kr2]E1

g0(kþ 1)

[kþ 1]

� �
0BB@

1CCA (36)

C1
cifr

B
’ ln 1þ

gt[kþ 1� kr2]

limg0!0

PL�1
k¼0 (�1)k L

kþ 1

� �
[kþ 1� kr2] �E � log

g0(kþ 1)

[kþ 1]

� �
þ

g0(kþ 1)

[kþ 1]

� �� �
0BB@

1CCA (37)
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Inserting (4) into (40) yields

FC (t) ¼
XL�1

k¼0

(�1)k L

kþ 1

� �
[1�

kr2

kþ 1
]�1

�

ð1

0

(1þ g)t=ln (2) exp
�g(kþ 1)

gt[kþ 1� kr2]

� �
dg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

I3

(41)

The integral I3 can be obtained by using the change of
variable x ¼ 1þ g resulting in

I3 ¼ exp
(kþ 1)

gt[kþ 1� kr2]

� � ð1

0

xt=ln (2)

� exp
�x(kþ 1)

gt[kþ 1� kr2]

� �
dx (42)

With the help of identity [15]

ð1

u

xn�1e�mx dx ¼ m�n
G(n, um) (43)

Hence, the MGF of the capacity can be computed as

FC (t) ¼
XL�1

k¼0

(� 1)k L

kþ 1

� �
(kþ 1)

gt[kþ 1� kr2]

� ��t=ln (2)

� exp
(kþ 1)

gt[kþ 1� kr2]

� �
� G

t

ln (2)
þ 1,

(kþ 1)

gt[kþ 1� kr2]

� �� �
(44)

where G(a, x) ¼
Ð1

x ta�1e�t dt 8{a, x} � 0 denotes the upper
incomplete Gamma function.

Moreover, I3 in (41) can be shown in another form using
the integral representation of the confluent hypergeometric
function c(a; b; z) [15]

C(a, b; z) ¼
1

G(a)

ð1

0

e�zt ta�1(1þ t)b�a�1 dt (45)

The MGF can be expressed as

FC(t) ¼
XL�1

k¼0

(� 1)k L

kþ 1

� �
(kþ 1)

gt[kþ 1� kr2]

� ��t=ln (2)

�C 1,
t

ln (2)
þ 2; �

�g(kþ 1)

gt[kþ 1� kr2]

� �� �
(46)

Note that using alternative notation for C(a, b; z) ¼
z2a

2F0(a, 1þ a 2 b; .; 21/z), where 2F0(. , ; . : .) is a
generalised hypergeometric series [15], the MGF of C can
48
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simply be written as

FC (t) ¼
XL�1

k¼0

(�1)k L

kþ 1

� �
(kþ 1)

gt[kþ 1� kr2]

� �[t=ln (2)]�1

� 2F0 1,
t

� ln (2)
; �

�gt[kþ 1� kr2]

g(kþ 1)

 ! !
(47)

4.2 Complementary cumulative
distribution function (CCDF)

The CDF of C is defined as follows:

FC (C) ¼ Prob(C � C) ¼

ð2C
�1

0

pg(g) dg (48)

Averaging over the distribution of gamma in the presence of
Gaussian channel estimation errors results in

FC(C) ¼ 1�
XL�1

k¼0

(�1)k L

kþ 1

� �
exp

2C
� 1(kþ 1)

gt[kþ 1� kr 2]

 !
(49)

Thus, the complementary CDF can be obtained from (48) as
follows:

F C (C) ¼ 1� FC (C) ¼
XL�1

k¼0

(�1)k L

kþ 1

� �

� exp
2C
� 1(kþ 1)

gt[kþ 1� kr2]

 !
(50)

4.3 Probability density function

The PDF of C is defined as the derivative of FC (C) with
respect to C. Taking the derivative of FC (C) in (45) results in

pC (C) ¼
d

dC
FCora

(C) ¼ 2C ln (2)
XL�1

k¼0

(�1)k L

kþ 1

� �

�
kþ 1

gt[kþ 1� kr2]
exp

(2C
� 1)(kþ 1)

gt[kþ 1� kr2]

 !
(51)

Note that (51) can also be obtained from (4) by performing a
transformation of random variables g! C . The Jacobian of
such transformation being J (g) ¼ d=dg ¼ [1= ln (2)(1þ g)]
pC (C) can be easily obtained as

pC (C) ¼ 2C ln (2)pg(2C
� 1) (52)

which is consistent with the result obtained in (51).
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5 Numerical results
In this section, we provide some numerical results that
illustrate the mathematical derivation of the channel capacity
per unit bandwidth as a function of average receiver SNR
(gt) in dB for different adaptation policies with SCD over
slow Rayleigh fading with weight estimation errors. All
curves provided are obtained using the closed-form
expressions (17), (19), (22), (25), (26), (28), (34)–(37), (44),
(50) and (51).

Fig. 1 shows the comparison of the capacity per unit
bandwidth for opra, ora and tifr policies. The results
indicate how the opra policy achieves the highest capacity
for any average receiver SNR, gt. From the same figure, it
can be noticed that ora achieves less capacity than opra.

Figure 1 Capacity per unit bandwidth for a Rayleigh fading
with SCD diversity (L ¼ 3) for different adaptation schemes

Figure 2 Capacity per unit bandwidth for a Rayleigh fading
with SCD diversity (L ¼ 3) and various values of different r
under power and rate adaptation
Commun., 2009, Vol. 3, Iss. 9, pp. 1443–1451
: 10.1049/iet-com.2008.0482
However, both opra and ora achieve the same result when
there is no power adaptation implemented at the
transmitter as in opra. As expected, Fig. 1 shows that the
tifr scheme achieves less capacity compared to the other
adaptation policies. The results in Fig. 1 are plotted for the
case of a fully estimated channel (r ¼ 1).

Fig. 2 compares Copra for different values of correlation
between the channel and its estimate; namely,
r ¼ 0:3, 0:5, 0:7, 0:9 and 1. It can be noticed that the
highest Copra that can be achieved when r ¼ 1. Furthermore,
Copra decreases when the value of r decreases where in this
case the weight error is increases. It can be observed from
Fig. 2 that there is almost a 5 dB difference in Copra between
r ¼ 1 and 0.3. Figs. 3 and 4 show the capacity of opra and
tifr schemes for different values of r, respectively. It can be

Figure 3 Capacity per unit bandwidth for a Rayleigh fading
channel with SCD (L ¼ 3) and various values of different r
under rate adaptation and constant power

Figure 4 Capacity per unit bandwidth for a Rayleigh fading
with SCD diversity (L ¼ 3) and various values of different r
for truncated inverse channel and fixed rate
1449
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seen that the tifr policy is very sensitive to the channel estimation
errors whereas there is almost 7 dB difference in Ctifr between
r ¼ 1 and r ¼ 0:3. Fig. 5 shows the dependence of Ctifr on
the cutoff SNR, g0 for different values of r. All the curves
show that the the capacity differs for different values of r.
Also, expression (34) implies that the spectral efficiency is
maximised for the optimal cutoff SNR g0. Fig. 6 shows the
behaviour of the outage probability for different values of r. It
can be observed that when there are no data to be transmitted
because of the outage event, the tifr policy suffers an outage
probability that is larger than the outage probability suffered
by the opra policy.

Fig. 7 depicts the PDF curves for different values of r

considering an average SNR of gt ¼ 15 dB and L ¼ 3.

Figure 5 Capacity per unit bandwidth for a Rayleigh fading
with SCD diversity (L ¼ 3) and various values of r against
optimal cutoff SNR g0 with truncated channel inversion
with gt ¼ 15 dB

Figure 6 Probability of outage for a Rayleigh fading with
L ¼ 3 and various values of r with gt ¼ 15 dB
50
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This figure shows that the capacity distribution has a
Gaussian-like shape even in the presence of channel
estimation errors. As expected, we see how the distribution
of C shifts towards the left indicating a decreasing value of
its mean as the value of r decreases Fig. 8 considers the
same setting in Fig. 7 and depicts the CCDF curves for
different values of r, with very similar observations.

6 Conclusions
The channel capacity for unit bandwidth for three different
adaptation policies including their approximations and
upper bounds over a slow Rayleigh fading channel for SCD
with estimation error is discussed. Closed-form expressions
for three adaptation policies are derived for an L-selection
combiner. Our numerical results showed that for the same

Figure 7 Probability density function PC(C) for an SCD with
L ¼ 3 at gt ¼ 15 dB and different values of r

Figure 8 Cumulative distribution function FC(C) for an SCD
with L ¼ 3 at gt ¼ 15 dB and different values of r
IET Commun., 2009, Vol. 3, Iss. 9, pp. 1443–1451
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bandwidth, the capacity increases with increase of the
diversity order L and increase of the average gt per branch.
Also, the result showed that Copra outperforms Cora and
Ctifr, however, Cora is less sensitive to the estimation error
than the other policies. Furthermore, we provided analytical
results for the PDF and CDF as well as the MGF.
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