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1. INTRODUCTION

A serious challenge to having good communication quality
in wireless networks is the time-varying multipath fading
environments, which causes the received signal-to-noise
ratio (SNR) to vary randomly. One solution to fading is the
use of spread spectrum (SS) techniques, which randomizes
the fading effect over a wide frequency band. The main types
of SS are the direct sequence SS (DSSS) and the frequency
hopping SS (FHSS). FHSS is the transmission technique in
Bluetooth, GSM, and the IEEE802.11 standard.

In FHSS, each user starts transmitting his data over a
narrow band during a time slot (called dwell time), and then
hops to other bands in the subsequent time slots according
to a pseudorandom (PN) code (sequence) assigned to the
user [1]. Thus, the transmission in FHSS takes place over
the wideband sequentially in time. The main advantage of
FHSS is the robust performance under multipath fading,
interference, and jamming conditions. In addition, FHSS
posses inherent frequency diversity, which improves the
system performance significantly over fading channels [1].
Furthermore, data sent over a deeply faded frequency band
can be easily corrected by employing error correcting codes
with FHSS systems [1]. In particular, convolutional codes
are considered to be practical for short-delay applications

because the performance is not affected significantly by the
frame size.

In cellular networks, multiple access interference (MAI)
may arise when more than one user transmit over the same
frequency band at the same time in the uplink. This happens
when users in closely located cells are assigned PN codes
that are not perfectly orthogonal. In this case, a collision
occurs when two users transmit over the same frequency
band simultaneously, which degrades the performance of
both users significantly. Also, MAI may be due to the lack of
synchronization between users transmitting in the same cell
[2–4]. In this case, the borders of time slots used by different
users to hop between frequency bands are not aligned, that is,
a user hops before or after other users. This case is referred to
as asynchronous FHSS. The performance of channel coding
with fast FHSS and partial-band interference is well studied
in the literature as in [5–8]. However, not much work was
done to investigate the performance of coding with slow
FHSS and partial-band interference.

In this paper, we derive a new union bound on the
bit error probability of coded FHSS systems with MAI. We
consider FHSS systems with perfect channel estimation and
pilot-aided channel estimation over Rician and Nakagami
fading channels. The derivation is based on modeling the
FHSS effective channel as a block interference channel



2 EURASIP Journal on Wireless Communications and Networking

U S
Encoder

Channel
interleaver

Binary
modulator

FHSS

Figure 1: Block diagram of a coded FHSS transmitter.

[9]. Then, the pairwise error probability (PEP) is derived
by conditioning over the number of interfering users in
the network and then by averaging over this number. In
modelling the MAI, we consider the exact statistics in the case
of perfect channel state information (CSI) and Nakagami
fading, as well as the Gaussian approximation in the case
of imperfect CSI and Rician fading. We investigate that
the tradeoff between channel estimation and diversity in
FHSS systems is studied in order to approximate the optimal
hopping rate in FHSS systems with MAI, defined as the hope
rate at which the performance of the FHSS system is the best
compared to its performance using different hopping rates.

The outline of this paper is as follows. The coded FHSS
system model is described in Section 2. In Section 3, a
union bound on the bit error probability for coded FHSS
systems is derived for different fading statistics and channel
estimation assumptions. Results are discussed in Section 4
and conclusions are presented in Section 5.

2. SYSTEM MODEL

The general block diagram of a coded FHSS transmitter
is shown in Figure 1. The transmitter consists of a binary
encoder (e.g., convolutional or turbo), an interleaver, a
modulator, and an FHSS block. Time is divided into frames
of duration NT , where T is the transmission interval of a
bit. Each frame is encoded using a rate Rc encoder, and
each coded bit is modulated using BPSK. Then, each frame
is transmitted using FHSS, where the transmitter hops J
times during the transmission of a frame. Thus, the frame
undergoes J independent fading realizations, where blocks
of m = �N/J� bits undergo the same fading. In the FHSS
context, the transmission duration of m bits represents the
dwell time of the system. Effectively, each packet undergoes
a block fading channel [9]. Note that the frame is bit-
interleaved prior to the FHSS transmission in order to spread
burst errors in the decoder.

We consider a multiple-access FHSS network of K users.
The frequency band is divided into Q bands and users
transmit their data by hopping randomly from one band to
another. When more than one user transmit over the same
band simultaneously, a hit (or collision) occurs. Throughout
this paper, we assume synchronous transmission with a hit
probability given by ph = 1/Q. Given that only k users
(among the total of K users operating in the network)
interfere with the user of interest, the matched filter sampled
output at time l in the jth hop is given by

yj,l =
√
Eshjs j,l + zj,l +

k∑

f=1

√
EIh f , j s f , j,l, (1)

where Es is the average received energy, s j,l = (−1)cj,l : cj,l
is the corresponding coded bit out of the channel encoder,

and zj,l is a noise sample modeled as independent zero-
mean Gaussian random variable with a variance of N0/2.
The coefficient hj is the channel gain in hop jwhich can be
written as hj = aj exp( jθ j), where θj is uniformly distributed
in [0, 2π) and aj is the channel amplitude.

If a line-of-site (LOS) exists between the transmitter and
the receiver, the channel amplitude is modeled as a Rician
random variable [10]. In this model, the received signal
consists of a specular component due to the LOS and a
diffuse component due to multipath. Hence, the channel
gain in each hop is modeled as CN (b, 1), where b represents
the specular component. Thus, the SNR pdf of a Rician
fading is given by

fγ(x) = (1 + κ)
Ω

exp
[
− κ− (1 + κ)x

Ω

]

× I0

⎛
⎝2

√
κ(1 + κ)x

Ω

⎞
⎠ , x ≥ 0,

(2)

where κ = b2 is the energy of the specular component
and I0(·) is the zero-order modified Bessel function of
the first kind. In this context, κ denotes the specular-to-
diffuse component ratio. Another fading distribution is the
Nakagami distribution, which was shown to fit a large variety
of channel measurements. In Nakagami fading channels, the
pdf of the received SNR [11] is given by

fγ(x) =
(
μ

Ω

)μ xμ−1

Γ(μ)
exp

(
− μx

Ω

)
, x > 0, μ > 0.5,

(3)

where Γ(·) is the Gamma function and μ = Ω2/Var[√γ] is
the Nakagami parameter that indicates the fading severity.

The term EI in (1) is the average received energy for each
of interfering user and s f , j,l is the signal of the f th interfering
user in the jth hop. The term h f , j denotes the channel gain
affecting the f th interfering user in hop j and modeled as
CN (0, 1). We define the signal-to-interference ratio (SIR) as
the ratio Δ = Es/EI . The SIR indicates the relative received
energy of each of the interfering signals to the received energy
of the desired signal. The average signal-to-interference-and-
noise ratio (SINR) given k interfering users is defined as

Λ(k) = Es
N0/2 + kEI

= Rcγb
1/2 + k

(
γb/Δ

) , (4)

where γb = Es/RcN0 is the SNR per information bit.
The receiver employs maximum likelihood (ML)

sequence decoding which is optimal for minimizing
the frame error probability. If perfect CSI is available
at the receiver, the decoder chooses the codeword
S = {s j,l, j = 1, . . . , J , l = 1, . . . ,m} that maximizes
the metric:

m(Y, S | H) =
J∑

j=1

m∑

l=1

Re
{
y∗j,lh j s j,l

}
, (5)

where Y = {yj,l, j = 1, . . . , J , l = 1, . . . ,m}. The metric
used in the case of imperfect CSI is presented in Section 3.2
in details.
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3. BIT ERROR PROBABILITY

For linear convolutional codes with r input bits, the bit error
probability is upper bounded [12] as

Pb ≤ 1
r

N∑

d=dmin

wdPe(d), (6)

where r is the number of input bits to the encoder in each
time interval, dmin is the minimum distance of the code, and
Pe(d) is the PEP defined as the probability of decoding a
received sequence as a weight-d codeword given that the all-
zero codeword is transmitted. In (6), wd is the number of
codewords with output weight d obtained from the weight
enumerator of the code [12].

In FHSS systems, the PEP in (6) is a function of
the distribution of the d nonzero bits over the J hops.
This distribution is quantified assuming uniform channel
interleaving of the coded bits over the hops [13]. Denote
the number of hops with weight v by jv and define w =
min(m,d), then the hops are distributed according to the
pattern j = { jv}wv=0 if

J =
w∑

v=0

jv, d =
w∑

v=1

v jv. (7)

Denote by L = J − j0 the number of hops with nonzero
weights. Then, Pe(d) is determined by averaging over all
possible hop patterns as

Pe(d) =
min(d,J)∑

L=�d/m�

L1∑

j1=0

L2∑

j2=0

· · ·
Lw∑

jw=0

Pe(d | j)p(j | d), (8)

where Pe(d | j) is the PEP given the hop pattern j occurred,
p(j | d) is the probability of the hop pattern j to occur when
the number of errors is d, and

Lv = min
{
L−

v−1∑

r=1

jr ,
⌊
d −∑v−1

r=1r jr
v

⌋}
, 1 ≤ v ≤ w.

(9)

The probability of a hop pattern j for a weight-d codeword is
computed using combinatorics as

p(j | d) = ( m
1 ) j1 ( m

2 ) j2 · · · ( m
w ) jw

( mJ
d )

· J !
j0! j1! . . . jw!

. (10)

Substituting (8)–(10) in (6) results in the union bound
on the bit error probability of convolutional coded FHSS
systems.

It should be noted that carefully designed interleavers
may outperform the uniform interleaver. However, analyzing
coded systems with specific interleavers is much more
complicated. Note that the number of summations involved
in computing Pe(d) in (8) increases as the hop length
increases. A good approximation to the union bound is
obtained by truncating (6) to a small value of dmax < N .
However, it is well known that the low-weight terms in the

union bound dominate the performance at high SNR values,
where the bound is more useful. Therefore, our bound
approximation becomes more accurate at high SNR, where
the bound is more useful.

The PEP conditioned on the channel fading gains and the
hop pattern j is given by

Pe(d | H, j) = Pr
(

m(Y, S | H)−m
(

Y, Ŝ | H
)
< 0 | d, S, H, j

)
,

(11)

where H = {hj}Jj=1. The PEP is found by substituting
the decoding metric for a given receiver in (11) and then
averaging over the fading gains as discussed below.

3.1. Perfect CSI

Conditioning on the number of interfering users and
substituting the metric (5) in (11), the PEP for BPSK with
perfect CSI is given by

Pe(d | H, j, k) = Pr

⎛
⎝

J∑

j=1

m∑

l=1

Re
{
y∗j,lh j

}
< 0 | d, S, H, j, k

⎞
⎠ .

(12)

3.1.1. Exact analysis

Given that k users are interfering with the user of interest,
and conditioned on the fading amplitudes affecting the jth
hop, the short-term SINR in the jth hop is written as in [14–
18]:

βj =
a2
j γb

1/2 +
(
γb/Δ

)∑k
f=1a

2
f

, (13)

where a f is the fading gain of the signal arriving from the
f th interfering user. In (13), we assumed that the desired and
interfering signals have different average-received energies
related by Δ = Es/EI . In order to find (12), the statistics of
the SINR defined in (13) have to be found.

The PEP for coherent BPSK conditioned on the fading
amplitudes and number of interfering users is given by

Pe(d | H, j, k) = Q

⎛
⎜⎝

√√√√√ Rcγb
∑w

v=1 v
∑ jv

i=1a
2
i

1/2 +
(
γb/Δ

)∑k
f=1a

2
f

⎞
⎟⎠

= Q

⎛
⎜⎜⎝

√√√√√
w∑

v=1

v
jv∑

i=1

βi

⎞
⎟⎟⎠ .

(14)

Using the integral expression [19] of the Q-function, Q(x) =
(1/π)

∫ π/2
0 e(−x2/2sin2θ)dθ, an exact expression of the PEP is

found as

Pe(d | j, k) = 1
π

∫ π/2

0
E{β}

[
exp

(
− αθ

w∑

v=1

v
jv∑

i=1

βi

)]
dθ

= 1
π

∫ π/2

0

w∏

v=1

[
Φβ

(
vαθ

)] jv dθ,

(15)
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where αθ = 1/(2sin2θ) and

Φβ(s) = Eβ
[
e−sβ

]
(16)

is the moment generating function (MGF) of the random
variable β. Note that the product in (15) results from the
independence of the fading variables affecting different hops
in a frame.

In order to find the MGF of β, we need to derive its
pdf which is a function of the number of interfering users.
The conditional pdf of the SINR, given that the number
of interfering users is k for integer values of the Nakagami
parameter μ [14], is found to be

fβ|k(x) = μμ(1+k)xμ−1e−μx

Γ(μ)Γ(kμ)

μ∑

h=0

(
μ
h

)
Γ(kμ + h)

(μx + μ)kμ+h , x > 0.

(17)

Since users collide with probability ph and the total number
of users is K , the number of interfering users is a binomial
random variable with parameters ph and K . Hence, the pdf
of the SINR is found by averaging (17) over the statistics of
the number of interfering users as follows:

fβ(x) =
K∑

k=0

(
K
k

)
pkh

(
1− ph

)K−k
fβ|k(x). (18)

Therefore, the MGF of the SINR, β is given by

Φβ(s) =
K∑

k=0

(
K
k

)
pkh

(
1− ph

)K−k
Φβ|k(s), (19)

where Φβ|k(s) is the conditional MGF of the SINR, β. For
integer Nakagami parameters [14], it is given by

Φβ|k(s) = μμ

Γ(kμ)

μ∑

h=0

(
μ
h

)
Γ(kμ + h)

μh

×U
(
μ;μ(1− k)− h + 1; 1 +

μ

s

)
,

(20)

where U(·; ·; ·) is the confluent hypergeometric function
of the second kind defined in [20]. The MGF required
to evaluate (15) is found by substituting (20) in (19) and
expressing U(·; ·; ·) as

U(a; b; x) = π

sin(πb)

[
1F1(a, b; x)

Γ(a− b + 1)Γ(b)
− x1−b

Γ(a)Γ(2− b)

× 1F1(a− b + 1, 2− b; x)
]

,

(21)

where 1F1(·, ·; ·) is the confluent hypergeometric function
that is available in any numerical package such as Mathcad.
Once the MGF is evaluated, the PEP is evaluated by
substituting (19) in (15). Since the integral in (15) is definite,
its computation is straightforward using standard numerical
integration packages.

3.1.2. Gaussian approximation

The performance analysis of coded FHSS using the exact
statistics of the SINR defined in (13) is not always a straight-
forward task, especially the cases of for Rician fading and
imperfect CSI. To overcome this problem, the interference
term is approximated by a Gaussian random variable [21].
According to [21], if the number of interfering users exceeds
5, the interference term in (1) can be safely approximated
to be a Gaussian random variable with zero-mean and a
variance of kEI . In this paper, we will use this approximation
for the cases of Rician fading and imperfect CSI.

Using the Gaussian approximation to simplify (12), the
distribution of Re{yj,l} conditioned on aj is Gaussian with a
mean

√
Esajs j,l and a variance N0/2+kEI . In order to simplify,

the PEP becomes

Pe(d | H, j, k) = Q

⎛
⎜⎝

√√√√Rcγb
∑w

v=1v
∑ jv

i=1a
2
i

1/2 + kγI

⎞
⎟⎠

= Q

⎛
⎜⎜⎝

√√√√√Λ(k)
w∑

v=1

v
jv∑

i=1

a2
i

⎞
⎟⎟⎠ ,

(22)

where Λ(k) is the SINR defined in (4). For FHSS systems,
the PEP is found by averaging (22) over the number of
interfering users k as

Pe(d | H, j) =
K−1∑

k=0

(
K − 1
k

)
pkh

(
1− ph

)K−1−k

×Q

⎛
⎜⎜⎝

√√√√√Λ(k)
w∑

v=1

v
jv∑

i=1

a2
i

⎞
⎟⎟⎠ .

(23)

One issue to be noted in (23) is that the Gaussian approxima-
tion of interference may not result in a good approximation
for the terms with small number of interfering users k.
Thus, we expect that our performance analysis will result
in an optimistic result compared to the real case. However,
for the sake of a preliminary system dimensioning, such an
approximation will be enough.

In order to find the PEP, (23) is averaged over the
statistics of the Rician fading amplitudes in (2) resulting in

Pe(d | j) = 1
π

∫ π/2

0

K−1∑

k=0

(
K − 1
k

)
pkh

(
1− ph

)K−1−k

× exp
(
− κv jvαθΛ(k)

1 + κ + vαθΛ(k)

)

×
w∏

v=1

[
1 + κ

1 + κ + vαθΛ(k)

] jv

dθ.

(24)

3.2. Imperfect CSI

In FHSS systems, channel estimation is often achieved by
transmitting a pilot signal with energy Ep in each hop. The
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corresponding received signal conditioned on k interfering
users is given by

yj,p =
√
Ephj + zj,p +

k∑

f=1

√
EIh f . (25)

The ML estimator for hj is given by ĥ j = yj,p/
√
Ep = hj + ej ,

where ej is the estimation error given by

ej =
zj,p +

∑k
f=1

√
EIh f√

Ep

. (26)

If the number of interfering users is large enough, the
interference term can be approximated by a Gaussian
distribution with zero-mean and variance of kEI . Therefore,
the distribution of ej is CN (0, σ2

e ), where σ2
e = (N0+kEI)/Ep.

In an ML sequence decoding rule, it is desired to find the
codeword that maximizes the likelihood function p(Y, Ĥ |
S). In [13], this ML rule was shown to be difficult-to-
implement in a Viterbi receiver. Therefore, the following
suboptimal decoding metric that maximizes the likelihood
function p(Y | Ĥ, S) is employed:

m
(

Y, S | Ĥ
) =

J∑

j=1

m∑

l=1

Re
{
y∗j,l ĥ j s j,l

}
. (27)

Substituting the decoding metric (27) in (11), the PEP for the
suboptimal decoder becomes

Pe
(
d | Ĥ, j, k

) = Pr
( J∑

j=1

m∑

l=1

Re
{
y∗j,l ĥ j

}
< 0 | d, S, Ĥ, j, k

)
.

(28)

Using the Gaussian approximation to simplify (28), we

observe that the distribution of yj,l conditioned on ĥ j is a
complex Gaussian random variable with a mean

√
Ess j,lE[hj |

ĥ j] and a variance N0 + kEI + (1− ρ2)Es, where E[hj | ĥ j] =
(ρ/σ)(ĥ j − b) + b, σ = Var(ĥ j) = 1 + σ2

e , b = √κ, and

ρ = E
[(
hj − b

)(
ĥ j − b

)∗]
√

Var
(
hj

)
Var

(
ĥ j

) = 1√
1 + σ2

e

(29)

is the correlation coefficient between the actual channel gain
and its estimate. Thus, the PEP for the suboptimal decoder is
given by

Pe
(
d | Ĥ, j, k

) = Q

⎛
⎜⎜⎝

√√√√√Es
∑J

j=1dj

∣∣(ρ/σ)
(
ĥ j − b

)
+ b

∣∣2

N0/2 + kEI +
(
1− ρ2

)
Es

⎞
⎟⎟⎠ ,

(30)

where dj is the number of nonzero error bits in hop j and we
have assumed that Ep = Es, that is, the energy used for pilot
signals is equal to the signal energy. Define the normalized

complex Gaussian random variable ζj = (ĥ j − b)/σ + b/ρ
with distribution CN (b/ρ, 1). Then, the PEP simplifies to

Pe
(
d | Ĥ, j, k

) = Q

⎛
⎜⎝

√√√√ ρ2Rcγb
∑w

v=1v
∑ jv

i=1

∣∣ζi
∣∣2

1/2 + kγI + Rcγb
(
1− ρ2

)

⎞
⎟⎠ . (31)

Define the SINR for imperfect CSI given k interfering users
as

Λ̂(k) = Es
N0/2 + kEI +

(
1− ρ2

)
Es

= Rcγb
1/2 + kγb/Δ + Rcγb

(
1− ρ2

) .
(32)

Hence, the PEP becomes

Pe
(
d | Ĥ, j, k

) = Q

⎛
⎜⎜⎝

√√√√√Λ̂(k)
w∑

v=1

v
jv∑

i=1

∣∣ζi
∣∣2

⎞
⎟⎟⎠ . (33)

Averaging (33) over the fading amplitudes and the number of
interfering users, the PEP of coded FHSS systems over Rician
fading channels with imperfect CSI is given by (24) withΛ(k)
being replaced with Λ̂(k).

4. RESULTS AND DISCUSSION

To illustrate the results, we consider coded FHSS systems
employing a rate-1/2 convolutional code with a frame size
of N = 2× 512 coded bits. The union bound is truncated to
a distance dmax ≤ 15 in order to reduce the computational
complexity. Throughout the results, we assume that Q = 79
as in the Bluetooth technology. For the case of perfect CSI
over Nakagami fading, only the exact analysis is employed,
whereas the Gaussian approximation is used in the cases of
Rician fading and imperfect CSI.

Figure 2 shows the performance of an FHSS network
with 10 users and perfect CSI for different hop lengths.
We observe that the obtained analytical results closely
approximate the simulation results. Thus, the proposed
analytical approach provides an accurate measure of the
performance of coded FHSS systems with MAI. In the rest
of this paper, only analytical results are shown in order to
make the presentation of the results clear.

Figure 3 shows the performance of a coded FHSS system
over Nakagami fading with perfect CSI for different number
of users and hop lengths of m = 1 and m = 64. Comparing
the sets of curves corresponding to the cases of m = 1
and m = 16, we observe that the performance loss due to
interference increases as the hop length increases (or in other
words as the number of hops decreases). For example, for
the case of m = 1, 20-user system is worse than the one-user
system by almost 0.5 dB, whereas this difference is almost
1 dB for the case of m = 64. This is also clear in Figure 4,
which shows the performance of the coded FHSS system over
Nakagami fading with perfect CSI for different hop lengths m
and for 1 and 40 users. The reason behind this phenomenon
is that increasing the hop length decreases the diversity order
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Figure 2: Performance of a rate-1/2 convolutionally coded FHSS
system with perfect CSI for 10 users (K = 10) and different hop
lengths m = 1, 8, 16, 32, 64 (solid: approximation using the union
bound, dash: simulation).
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Figure 3: Performance of a convolutionally coded FHSS system
over Nakagami fading with perfect CSI for different number of users
K and SIR = 5 dB, (solid: m = 1, dashed: m = 64).

provided to the coded system, which increases the impact of
interference on the performance of the system.

Figure 5 shows the SINR required for the coded FHSS
system to achieve Pb= 10−5 over Rayleigh fading versus the
number of users K with perfect CSI for different hop lengths.
In the figure, we observe that as the hop length increases, the
required SNR increases up to a maximum number of users
beyond which the required performance cannot be achieved.
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Figure 4: Performance of a convolutionally coded FHSS system
over Nakagami fading with perfect CSI for different hop lengths m
and SIR = 5 dB, (solid: K = 1, dashed: K = 40).
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Figure 5: SNR required for a convolutionally coded FHSS system to
achieve Pb= 10−5 over Nakagami fading versus the number of users
K with perfect CSI for m = 1, 8, 16, 32, 64, 128 and SIR = 5 dB.

For example, a coded FHSS system with m = 64 can achieve
a Pb= 10−5 with an SNR of 12 dB when only 10 users exist in
the system. However, it cannot achieve the same performance
whatsoever if the number of users in the system exceeds 40
users. Therefore, if more than 40 users need to be supported
at a Pb= 10−5, then the hop length has to be decreased, that is,
the number of hops per frame has to be increased to increase
the diversity order in the coded system.
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Figure 6: Performance of a convolutionally coded FHSS system
over a Rician fading with κ = 10 dB and perfect CSI for different
number of users K and SIR = 5 dB, (solid: m = 1, dashed: m = 64).

The performance of the coded FHSS system over Rician
fading with κ = 10 dB and perfect CSI is shown in Figure 6
for different number of users and hop lengths of m = 1 and
m = 64. Comparing with the results for Nakagami fading, we
observe that the performance loss due to increasing the hop
length decreases as the fading becomes less severe. Similar
to the case of Nakagami fading, the performance loss due
to interference increases as the hop length increases. Note
that the error floor resulting from the interference is lower in
the case of Rician compared to that in the case of Nakagami
fading. In Figure 7, the performance of the coded FHSS
system over a Rician fading with κ = 10 dB and perfect CSI
is shown for different hop lengths and number of users of 1
and 40.

The results of imperfect CSI are obtained using only
pilot estimation (OPE) with Ep = Es. In this case, the
estimation error variance of σ2

e = (N0+kEI)/Es. In simulating
systems with OPE, one coded bit is punctured every m
coded bits to account for the rate reduction resulting from
inserting a pilot signal in each hop. This affects the whole
distance distribution of the resulting code and may reduce
the minimum distance of the code. The resultant code rate
after puncturing is given by

R̃ c = mRc

m− 1
. (34)

Table 1 shows the code rates and the minimum distances
of the punctured codes for different hop lengths. According
to the table, we conclude that systems with short hop are
expected to have more channel diversity at the cost of lower
minimum distance and worse channel estimation quality.

In Figure 8, we show the performance of the coded
FHSS system over Rayleigh and Rician fading channels with
OPE for a number of users K = 20 and different hop
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Figure 7: Performance of a convolutionally coded FHSS system
over a Rician fading with κ = 10 dB and perfect CSI for different
hop lengths m and SIR = 5 dB, (solid: K = 1, dashed: K = 40).

Table 1: Rates and minimum distances of the punctured rate-1/2
convolutional codes.

m Code Rate R̃ c dmin

4 0.667 4

8 0.571 5

16 0.533 6

32 0.516 6

64 0.508 6

lengths. We can observe that as the fading becomes more
severe (Rayleigh compared to Rician), the optimal hop length
decreases because the diversity becomes more crucial to the
performance as the fading becomes more severe. In addition,
the optimal hop length decreases as the SINR increases since
diversity becomes more important at high SINR.

Figure 9 shows the SINR required for the coded FHSS
system to achieve Pb= 10−4 over Rayleigh fading versus the
number of users K with an OPE receiver for different hop
lengths. We observe that as the hop length increases, the
required SINR increases up to a maximum number of users
beyond which the required performance cannot be achieved.
This is similar to the observation made in the perfect CSI
case. A more interesting observation is that short hop lengths
start to outperform long hop lengths as the number of user
increases. This is very clear in the behavior of the cases
of m = 16 and m = 64, where the latter outperforms
the former for small number of users, and the converse
occurs as the number of users increases. This agrees with the
observation made in Figures 3 and 4, where it was concluded
that the performance loss due to interference increases with
increasing the hop length of the coded system.
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Figure 8: Performance of a convolutionally coded FHSS system
over Rayleigh and Rician fading channels with an OPE receiver for
number of users K = 20, SIR = 5 dB, and different hop lengths m =
8, 16, 32, 64, 128, (solid: Rayleigh, dashed: Rician with κ = 10 dB).
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Figure 9: SNR required for a convolutionally coded FHSS system
achieve Pb= 10−4 over Rayleigh fading versus the number of users
K with an OPE receiver for SIR = 5 dB and m = 8, 16, 32, 64, 128.

In Figure 9, we observe that the optimal hop for the
coded FHSS system over Rayleigh fading channel is m =
32, for all the number of users. In Figure 10, the same
information shown in Figure 9 is shown for Rician fading
channel with κ = 10 dB, where we observe that the optimal
hop increases as the channel become less severe (i.e., as
the Rician factor increases) since diversity becomes less
important. In particular, for Rician fading channels with
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Figure 10: SNR required for a convolutionally coded FHSS system
to achieve Pb= 10−4 over Rician fading with κ = 10 dB versus the
number of users K with an OPE receiver for SIR = 5 dB and m =
8, 16, 32, 64, 128.

κ = 10, the cases of m = 16 and m = 32 compete for the
optimal hop length, and the former wins as the number of
users increases.

5. CONCLUSIONS

In this paper, we derived a union bound for coded FHSS
systems with MAI. Results show that the performance loss
due to interference increases as the hop length increases (or
in other words as the number of hops in FHSS systems
decreases). This performance loss increases as the number of
users increases. Furthermore, the tradeoff between channel
diversity and channel estimation under interference condi-
tions has been investigated analytically. It was found that
as the fading becomes more severe (Rayleigh as compared
to Rician), the optimal hop length decreases. In addition,
the optimal hop length decreases as the SINR increases
since diversity becomes more important at high SINR.
Furthermore, the optimal hop length tends to increase as
the SIR increases for the same reason. In the case of channel
estimation, the proposed analytical approach can be safely
applied to FHSS systems with large number of users.
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