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Abstract: A new union bound on the bit error probability of bit-interleaved space–time (BI-ST) coded systems is
derived. Unlike existing performance analysis tools for BI-ST systems, the new bound provides a general
framework for analysing the performance of BI-ST systems employing finite interleaver sizes. The derivation is
based on the uniform interleaving assumption of the coded sequence prior to transmission over multiple
antennas. The new bound is a function of the distance spectrum of the code, the signal constellation used
and the space–time (ST) mapping scheme. The bound is derived for a general BI-ST coded system and applied
to two specific examples, namely, the BI space –time coded modulation and the BI space– time block codes.
Results show that the analysis provides a close approximation to the BI-ST performance for a wide range of
signal-to-noise ratios. The analysis can also accurately characterise the performance differences between
different interleaver sizes, which is a breakthrough in the analysis of BI-ST coded systems.
1 Introduction
Achieving high-rate reliable communications over a time-
varying fading channel resulting from multi-path reception is
a significant challenge. One standard approach to mitigate
fading and achieve bandwidth efficiency is transmit diversity
in which multiple antennas are used at the transmitter.
Using the combination of multiple transmit antennas and
error control coding is referred to as space–time (ST) coding
[1, 2]. Simple and elegant space–time block codes (STBC)
were proposed in [3] to provide diversity at the transmitter.

Coded modulation [4] is an efficient technique that
provides high transmission rates at good quality by
combining error control coding and modulation. The
performance of coded modulation can be enhanced by
interleaving the coded bits prior to mapping them onto the
signal constellation [5, 6]. This method is referred to as
bit-interleaved coded modulation (BICM). BICM is
applied to multi-input multi-output (MIMO) systems in
0
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[7], in which the coded bits are bit-interleaved and each
group of bits is mapped onto signals that are transmitted
over multiple transmit antennas. Two approaches to
mapping the coded bits onto the signals are considered in
this article, namely, the BI-ST block code (BI-STBC) [8]
and the BI-ST coded modulation (BI-STCM) [9, 10].

Because of the interleaver used in the transmitter, each
signal vector (transmitted over the multiple transmit
antennas) is composed of coded bits that are randomly
located in the coded sequence (from the decoder point of
view). At the receiver, the random distribution of the error
bits over different symbols causes the performance analysis
to be difficult. For fast Rayleigh fading case, union bounds
on the bit error probability of BICM systems under the
assumption of infinite interleaver size are presented in [6,
11–13]. Although BI-ST coded systems can be regarded
as special cases of BICM, the performance analysis of
BI-ST is not a trivial extension of BICM analysis owing to
the more complex structures of the space–time codes. The
IET Commun., 2008, Vol. 2, No. 10, pp. 1230–1238
doi: 10.1049/iet-com:20080051



IET
doi:

www.ietdl.org
bound analysis in [6, 11] is extended for BI-STBC in [8].
The expurgation method used in these articles is shown to
be flawed in [14] which affects the validity of the bound
analysis. Moreover, the bound analysis in these articles
assumes that because of the infinite interleaving, every
symbol error has only one bit error among the bits
associated with the symbol. It is proved in this article that
the assumption is only true when the interleaver size goes
to infinity. As a result, the bound analysis in [6, 8, 11, 12]
cannot characterise the performance of an interleaver with a
specific size.

We derive a new union bound on the bit error probability
of BI-ST coded systems over block fading channels with
finite interleaver sizes, which is considered as a
breakthrough in the analysis of BI-ST systems. As the
analysis of BI-STBC significantly differs from that of
BI-STCM, the error probability analysis is derived for both
systems here. The new bound is based on the uniform
(random) interleaving of the coded bits prior to mapping
them onto modulation symbols that are transmitted over
transmit antennas. The distribution of the error bits in a
received vector is derived and the corresponding pairwise
error probability is evaluated. Flat multipath fading
channels following Rician and Nakagami distributions are
considered for BI-STBC, whereas only Rician fading is
considered for BI-STCM as the analysis under Nakagami
fading is not tractable because of the nature of the random
variables involved. Although no expurgation is done,
simulation results show that the proposed bound is tight
for different Gray-mapped constellations, ST coding
schemes and channel models.

The outline of the article is as follows. The model for
BI-ST coded system is described in Section 2. In Section
3, the proposed union bound is derived. The characteristic
function required to evaluate the union bound is derived for
the BI-STCM and BI-STBC systems in Sections 3 and 4,
respectively. The asymptotic effect of the interleaver size is
analysed in Section 5. Analytical and simulation results are
Commun., 2008, Vol. 2, No. 10, pp. 1230–1238
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presented in Section 6. Conclusions are discussed in
Section 7.

2 System model
Consider the BI-ST coded system shown in Fig. 1. The
encoder receives an information block u of K bits and
generates an N-bit codeword c resulting in a code rate
Rc ¼ K=N . After encoding, the codeword c is bit
interleaved to generate the interleaved codeword
p(c) ¼ (b1, b2, . . . , bL) that consists of L blocks each of q
m bits. Each of the L blocks is referred to as an ST block
(STB). Note that N ¼ qmL. The STB bl is mapped onto
q symbols (sl ,1, sl ,2, . . . , sl ,q) by an ST mapper. Each of the
q symbols are drawn from an M-ary complex signal
constellation that consists of M ¼ 2m signal points with
average symbol energy equal to mEb, where Eb denotes the
energy per information bit. Every q symbol is mapped by
the ST encoder into p column vectors of length nT for
transmission by nT transmit antennas.

The ST code is characterised by an nT � p transmission
matrix, where p ¼ 1 or an integer that satisfies p � nT. In the
case of p ¼ 1, the system is a multiplexing system which is
given the name of STCM [1, 9, 10], whereas the case of
p � nT results in the well-known STBC [3]. The rows of the
transmission matrix consists of entries that are linear
combinations of sl ,1, sl ,2, . . . , sl ,q and s�l ,1, s�l ,2, . . . , s�l ,q. Denote

the transmission matrix by xl ¼ [xl ,1
T, xl ,2

T, . . . , xl ,p
T],

where {xl ,t
T} are column vectors of dimension nT � 1. The

ST encoder maps the vector (sl ,1, sl ,2, . . . , sl ,q) onto the

column vectors xl ,1
T, xl ,2

T, . . . , xl ,p
T, and the vectors {xl ,t

T}
are transmitted by nT antennas one at a time over p
transmission intervals. The p transmission intervals constitute
one STB. The code rate of the ST encoder is Rs ¼ qm=p, and
the overall rate of the BI-ST coded system is
R ¼ RsRc ¼ qmK=pN . In the case of STBC, that is p � nT,
the rows of transmission matrix are constructed to be
orthogonal in order to enable a linear complexity receiver [3].
Specific examples of ST codes are presented below.
Figure 1 Block diagram of the general BI-ST coded system
1231
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Example 1: When p ¼ 1 and q ¼ nT, the resulting system
is an STCM system. In STCM, every nT symbol is
transmitted over nT transmit antennas during one symbol
duration. In this case, the fading processes affecting
consecutive symbols are assumed to be independent.

Example 2: When p ¼ q ¼ nT ¼ 2, the resulting system is
the Alamouti STBC. The Alamouti STBC is characterised
by the 2 � 2 complex matrix xl presented in [3]. In this
case, the fading process should stay constant for at least
two symbols to enable simple detection. This is a full-rate
STBC.

Example 3: When nT , 2, q ¼ p , nT, the resulting
system is an STBC derived from orthogonal designs [2]. In
this case, the matrix xl is one of the nT � p complex
matrices presented in [2]. This is an STBC with a rate less
than unity.

We assume nR receive antennas, but the derivation is shown
for one receive antenna case only which can be easily extended
to the case of multiple receive antennas. The received signal
vector corresponding to a codeword c is denoted as
r ¼ (r1, r2, . . . , rL), where rl ¼ (rl ,1, rl ,2, . . . , rl ,p) and

rl ,t ¼ hl ,t � xl ,t
T
þ nl ,t (1)

where nl ,t is a length-p AWGN vector at the receive antenna
during the tth transmission period in the lth STB modelled as
CN (0p, N0I p), where I p denotes the p� p identity matrix and
0p is the 1� p zero matrix. The fading vector hl ,t consists of
nT independent and identically distributed (i.i.d.) random
variables {hi

l ,t}
nT
i¼1, where hi

l ,t denotes the fading attenuation
of the channel from the ith transmit antenna to the receive
antenna during the tth transmission period in the lth STB.
The fading channel is assumed to be constant during one
STB to enable low-complexity receivers for the STBC case
[3]. The magnitudes of the fading random variables are
assumed to follow either Rician or Nakagami distribution.
The receiver is assumed to have perfect channel state
information (CSI) and the decoding is done by minimising
the decision metric

XL

l¼1

Xp

t¼1

krl ,t � hl ,t xl ,t
T
k

2 (2)

which can be closely achieved via iterative ST detection and
decoding [15].

3 Union bound
In this section, we derive a union bound on the bit error
probability of the BI-ST coded system described in Section
2. Here, only BI-ST coded systems employing
convolutional codes are considered. However, the
performance analysis applies equally well to any coding
scheme with a known distance spectrum such as turbo
2
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codes [16–19], product codes [20] or block codes. The bit
error probability for a convolutional code is upper bounded
[21] by

Pb .

XN

d¼dmin

XK

j¼1

j

K
wj,d Pu(d ) (3)

where dmin is the minimum Hamming distance of the
convolutional code, wj,d denotes the number of
convolutional codewords with input Hamming weight j
and total weight d, and Pu(d ) is the pairwise error
probability defined as the probability of decoding a received
sequence as a codeword ĉ of error weight d given that the
codeword c was transmitted, i.e. the Hamming distance
dH(c, ĉ) ¼ d . Note that the pairwise error probability also
depends on the signal-to-noise ratio (SNR) and the signal
constellation used. We express it using the abbreviated
notation Pu(d ) to emphasise its dependence on d which
motivates the analysis afterwards. Throughout the article,
for any variable defined for c, the corresponding variable
defined for ĉ is denoted by using ‘ ˆ ’. The subscripts c, u
and b are used to denote conditional, unconditional and bit
error probabilities, respectively. Clearly, Pu(d ) depends on
the squared Euclidean distance d 2

E W [dE(c, ĉ)]2 between
the received sequences corresponding to the codewords
c and ĉ, which is a function of the distribution of the
d non-zero bits over the L STBs in the codeword. Using
the integral expression [22] of the Q function,
Q(x) ¼ 1=p

Ð p=2
0 e(�x2=2 sin2 u)du, we have

Pu(d ) ¼ Ed 2
E
jd Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rgb

2
� d 2

E

r !" #

¼
1

p

ðp=2
0

Cd 2
E
jd

Rgb

4 sin2 u

� �
du

(4)

where gb ¼ Eb=N0 is the SNR per information bit and
Cd 2

E
jd (z) W Ed 2

E
jd ½e
�zd2

E � is the conditional characteristic
function of the random variable d2

E given d.

As the combination of the signal constellation mapping
with the ST encoding may not have a symmetric structure
for all codewords, the Euclidean distance dE(c, ĉ) may not
be the same for different choices of c and ĉ even if the
Hamming distance dH(c, ĉ) is fixed at d. Hence we have to
take the expectation in (4) with respect to the distribution
of d 2

E given d. Thus, the task is to find the conditional
distribution of d 2

E given d. Denote the error vector between
two codewords p(c) and p(ĉ) by e(c, ĉ) ¼ (e1, e2, . . . , eL),
where el ¼ (el ,1, el ,2, . . . , el ,p) and el ,t ¼ xl ,t � x̂l ,t . The
squared Euclidean distance d 2

E can be expressed as

d 2
E ¼

XL

l¼1

Xp

t¼1

khl ,t el ,t
T
k

2
¼
XL

l¼1

d 2
l (5)

where d 2
l ¼

Pp
t¼1 khl ,t el ,t

T
k

2 is the squared Euclidean
distance between the received signal vectors associated
IET Commun., 2008, Vol. 2, No. 10, pp. 1230–1238
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with the lth STB, bl . As the total number of bit errors in
the codeword is d, the distribution of d 2

l depends on how
many bit errors exist in the STB bl . Thus, it is necessary
to find the conditional distribution of d 2

l given fl , where fl

denotes the number of bit errors in bl . Because of the uniform
interleaving and the independent fading assumptions, the
conditional distributions of {d 2

l j fl } are identical and the
characteristic function of d 2

E given d can be obtained as

Cd2
E
jd (z) ¼ Ef1, ... , fL

YL

l¼1

Cd 2
j

fl
(z)

" #

¼ Ej1, ... , jw

Yw

v¼1

fv(z)
� �

jv

" #
(6)

where jv denotes the number of STB’s with v bit errors,
w ¼ min {d , qm} and fv(z) is given by

fv(z) W Cd2
l
j fl

(zj fl ¼ v)

¼ Ed2
l
j fl

e�zd2
l j fl ¼ v

h i
, v ¼ 1, . . . , w

(7)

Clearly, the form of fv(z) depends on the fading distribution,
which will be derived in Section 4. As dH(c, ĉ) ¼ d , the
components of the vector j ¼ ( j0, j1, . . . , jw) are constrained
by the conditions

L ¼
Xw

v¼0

jv, d ¼
Xw

v¼1

vjv (8)

The joint pdf of j given d can be derived using combinatorics as

p( jjd ) ¼

qm

1

� �j1 qm

2

� �j2

. . .
qm

w

� �jw

N

d

� �

�
L!

j1!j2! . . . jw!(L�
Pw

v¼1 jv)!

(9)

The left factor of p( jjd ) in (9) is the probability of distributing d
non-zero bits over L error vectors with jv error vectors having v
bits for possible values of v. The right term of p( jjd ) is the
number of combinations of j ¼ { jv}w

v¼0 among the L error
vectors. The expectation in (6) is computed as

Cd2
E
jd (z) ¼

XLw

jw¼0

XLw�1

jw�1¼0

. . .
XL1

j1¼0

p( jjd )
Yw

v¼1

fv(z)
� �

jv

 !
(10)

where

Lv ¼ max 0,
d �

Pv
r¼vþ1 rjr

v

� �	 

1 � v � w (11)

Substituting (7)–(11) into (4) results in the final form of the
unconditional pairwise error probability. The rest of the article
Commun., 2008, Vol. 2, No. 10, pp. 1230–1238
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is devoted to deriving expressions of the characteristic function
fv(z) for BI-STCM ( p ¼ 1) and BI-STBC ( p � nT)
systems with different fading distributions.

4 Characteristic function
4.1 BI-STCM

In BI-STCM systems, p ¼ 1 and q ¼ nT, and thus we use
the notations el ¼ el ,1 and hl ¼ hl ,1. In this case, the
distance is given by d 2

l ¼ jhl el
T
j
2. Going through the

derivation in [1], the distance d 2
l simplifies to

d 2
l ¼ kelk

2
� jbl (el )j

2 (12)

where

bl (e) W
hl eT

kek
(13)

is a random variable whose distribution depends on the fading
distribution which will be derived later. This implies that
{bl (el )} are independent random variables. Given a realisation
of the error vector el , the conditional characteristic function
of d 2

l given el becomes

Cd2
l
kel

(z) ¼ Cjbl (el )j
2 zkelk

2
� �

(14)

To findfv(z) ¼ Cd2
l
j fl

(z), we first consider all
qm
2

� �
possible

STB combinations of bl and b̂l . For each pair, we feed them to
the STBC encoder to find the corresponding xl , x̂l and the
error vector el . Classify these STB pairs into groups according
to dH(bl , b̂l ). Suppose in the group of dH(bl , b̂l ) ¼ v bits, the
STB pairs of the group generates error vectors ev,1, ev,2, . . .
each with multiplicity mv,1, mv,2, . . ., respectively. Then the
conditional joint pdf of el given fl can be written as

pel jfl
(ejv) ¼

X
k

xv,kD(e� ev,k) (15)

where xv,k ¼ mv,k=
P

k mv,k is the probability for an error vector
ev,k to occur, and D(e) W 1 if e ¼ 0, and 0 otherwise. By (14)
and (15), we have

fv(z) ¼ Cd2
l
j fl

(z) ¼
X

k

xv,kCjbl (ev,k)j2 zjjev,kjj
2

� �
(16)

Clearly, the form of Cjbl (ev,k)j2 (z) is a function of the fading
distribution. If a line of site (LOS) exists between the
transmitter and the receiver, the amplitude of the channel gain
can be modelled as a Rician random variable [23]. In this
model, {hi

l ,t} are complex Gaussian random variables with a

mean of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(1þ k)

p
and a variance of 1=(1þ k) per

dimension, where k denotes the ratio of the specular
component energy to the diffuse component energy of
each fading channel. Therefore, bl (ev,k) is a complex
Gaussian random variable with mean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=(1þ k)

p
� z(ev,k)
1233
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and variance 1=(1þ k) per dimension, where z(e) is defined
as the sum of all elements of a vector e. In this case, the
pdf of the random variable jhj [24] is given by

pjhj(a) ¼ 2a(1þ k) exp �k� a2(1þ k)
� �

� I0 2a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(1þ k)

p
 �
; a � 0 (17)

Hence, jbl (ev,k)j
2 is a non-central chi-square distributed

with a characteristic function [25] given by

Cjbl (ev,k)j2 (z) ¼
1þ k

1þ kþ z
� exp

�zkjz(ev,k)j
2

1þ kþ z

 !
(18)

which yields

fv(z) ¼ Cd 2
l
j fl

(z) ¼
X

k

xv,k

1þ k

1þ kþ zjjev,kjj
2

"

� exp
�zkjz(ev,k)j

2
� jjev,kjj

2

1þ kþ zjjev,kjj
2

 !# (19)

4.2 BI-STBC

In BI-STBC systems, the fading gain of each channel remains
constant during each STB, i.e. hl ,1 ¼ hl ,2 ¼ � � � ¼

hl ,p ¼ hl ¼ {hi
l }. Recall that el ,t is a vector of dimension

1� nT and denoted by el ,t ¼ (e1
l ,t , e2

l ,t , . . . , e
nT
l ,t ). Owing to

the orthogonality of the row vectors of STBC transmission
matrix, we have

d 2
l ¼

Xp

t¼1

khl el ,t
T
k

2
¼
XnT

i¼1

jhi
l j

2
� j i

l

where j i
l ¼

Pp
t¼1 je

i
l ,t j

2. As {hi
l } are i.i.d. random variables, the

random variables {jhi
l j

2} are also i.i.d. with characteristic
function denoted as Cjhj2 (z). As {jhi

l j
2} are independent, we

can obtain the characteristic function of d 2
l given e0l given a

realization of e0l ¼ (j1
l , j2

l , . . . , j
nT
l ) as

Cd2
l
je0

l
(z) ¼

YnT

i¼1

Cjhj2 zji
l

� �
(20)

Using a similar approach of finding (15) in Section 4.1, we feed

all
qm
2

� �
possible STB pairs of bl and b̂l to the ST encoder to

obtain the conditional joint pdf of e0l given fl

p(e0l jfl ¼ v) ¼
X

k

x0v,kD(e� e0v,k) (21)

Denote the ith component of e0v,k by e0v,k(i). By (20) and (21),
we have

fv(z) ¼ Cd 2
l
j fl

(z) ¼
X

k

x0v,k

YnT

i¼1

Cjhj2 ze0v,k(i)
� �

(22)
4
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Clearly, Cjhj2 (z) depends on the fading distribution of the
channel. In the following, two different fading distributions
are considered, namely, Rician and Nakagami.

1. Rician fading: If jhj is a Rician random variable, then the
characteristic function is given by

fv(z) ¼
X

v

x0v,k

YnT

i¼1

1þ k

1þ kþ ze0v,k(i)

"

� exp �
zke0v,k(i)

1þ kþ ze0v,k(i)

 !#
(23)

2. Nakagami fading: Nakagami distribution is shown to fit a
large variety of channel measurements [26]. Under Nakagami
distribution, the pdf of jhj is given by

pjhj(a) ¼
2mm

G(m)Vm a2m�1 exp �
ma2

V

 !
a � 0,

m � 0:5 (24)

where V ¼ E[jhj2] ¼ 1, m ¼ V2=Var[jhj] is the fading
parameter and G(:) is the gamma function. In this case, the
characteristic function can be written as

fv(z) ¼
X

v

x0v,k

YnT

i¼1

1

1þ ðz=mÞe0v,k(i)

" #m

(25)

5 Asymptotic effect of interleaver
size
As the interleaver size increases, the interleaver provides
higher time diversity and thus lowers the BER. To analyse
the best possible performance from the BI-ST, one needs
to explore the asymptotic effect of the interleaver size on
the BER. Recall that the effect of an interleaver on BER is
characterised by the term p( jjd )in (9), which represents the
joint pdf of j given d. As the interleaver size N ¼ qmL
goes to 1, the error pattern jd ¼ (d , 0, 0, . . . , 0) dominates
the performance. Note that this error pattern indicates that
there are exactly d STB’s with 1 bit error. To prove this, let
us consider the limiting behaviour of (9) as N ! 1 with j
substituted by jd ¼ (d , 0, 0, . . . , 0). In this case, we have

lim
N!1

p( jd jd ) ¼ lim
L!1

qm

1

� �d

qmL

d

� � � L!

d !(L� d )!

¼ lim
L!1

(qm)d

(qmL)d=d !
�

Ld

d !
¼ 1 (26)
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In deriving (26), we have used the observations that

qml
d

� �
! (qmL)d=d ! and L!=(L� d )!! Ld as L! 1.

As the joint pdf values of all possible j sum up to 1, we have

lim
N!1

p( jjd ) ¼ dj1,d (27)

where di, j is the Kronecker delta. One can conclude from (27)
that as the interleaver size goes to infinity, the probability of
having more than one bit error in each STB diminishes. In
other words, given that there are d bit errors with a very
large interleaver size, it is highly likely to see d STB’s each
with one bit error. This gives the best possible performance
of the BI-ST. The asymptotic union bound can be obtained
simply by substituting (27) into (10) and then (4), (3).

6 Numerical results
As illustrative examples, we use BI-ST coded systems
employing a rate- 1/2 (5, 7) convolutional code with two
transmit antennas, that is nT ¼ 2. The modulation
techniques used are Gray-mapped quadrature-phase shift
keying (QPSK) and Gray-mapped quadrature-amplitude
modulation 16-QAM. Note that the derivation above
applies to any signal constellation. The throughputs of the
BI-STBC and BI-STCM systems are mRc and mnTRc

bits/s/Hz respectively. Unless otherwise stated, the
interleaver size is set to be N ¼ 1024 coded bits.

The performance of BI-STBC and BI-STCM under
Rayleigh fading is shown in Fig. 2. We observe that the
bound is tight to simulation curves at medium-to-high
SNR values. Note that the union bound becomes loose for
SNR values lower than the cutoff rate of the system [21].
We observe that the performance of BI-STBC is better

Figure 2 Bit error probability of convolutionally encoded
BI-ST systems using nT ¼ 2 under Rayleigh fading
Commun., 2008, Vol. 2, No. 10, pp. 1230–1238
: 10.1049/iet-com:20080051
than that of the BI-STCM. This is the tradeoff of the
higher throughput of BI-STCM that is nT times larger
than that of BI-STBC. Furthermore, in BI-STBC there
are nT observations available to detect the transmitted nT

signals as opposed to only one observation in BI-STCM.
Note that the slope of the error probability curves achieved
by BI-STBC is larger which indicates that the time
diversity of BI-STBC is larger than that of BI-STCM.

Figs. 3 and 4 show the performance of BI-STBC and
BI-STCM, respectively, using QPSK over Rician fading
channels with different Rician parameters k. Again, the

Figure 3 Bit error probability of a convolutionally encoded
BI-STBC using nT ¼ 2 over Rician fading channels with
different k values

Figure 4 Bit error probability of a convolutionally encoded
BI-STCM using nT ¼ 2 over Rician fading channels with
different k values
1235
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bound is shown to be tight to the simulation results for a wide
range of the LOS energy of the channel. As the LOS energy
increases, the channel becomes more dominated by the LOS
component, and hence the performance of the BI-ST coded
systems improves. In Fig. 5, we show the performance of
BI-STBC over Nakagami fading channels with different
Nakagami parameters m. As the fading parameter m of the
channel increases, the channel becomes less faded and hence
the performance of the BI-STBC system improves accordingly.

To show the effectiveness of the proposed bound on
capturing the effect of the interleaver size, the BER curves

Figure 5 Bit error probability of a convolutionally encoded
BI-STBC using nT ¼ 2 over Nakagami fading channels with
different m values

Figure 6 Bit error probability of a convolutionally encoded
BI-STBC using nT ¼ 2 under Rayleigh fading with different
interleaver sizes
6
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of BI-STBC and BI-STCM systems with different
interleaver sizes under Rayleigh fading are shown in Figs. 6
and 7. We can see that the bound accurately characterises
the performance of different interleaver sizes. The figures
imply that there is not much gain left for interleaver size
over 1024 bits. Without our bound analysis, one generally
chooses a large interleaver size to ensure low BER, which
causes large delay to the data transmission. Our bound is
useful for determining the interleaver size of BI-ST system
by exploring the tradeoff of BER against interleaver size.

In Fig. 8, the SNR required to achieve a BER of 1026 against
interleaver size is shown for BI-STBC and BI-STCM systems

Figure 8 SNR required to achieve a BER of 1026 against the
interleaver size for convolutionally encoded BI-STBC and
BI-STCM systems employing nT ¼ 2 with different
modulation schemes under Rayleigh fading (solid:
BI-STBC, dashed: BI-STCM)

Figure 7 Bit error probability of a convolutionally encoded
BI-STCM using nT ¼ 2 under Rayleigh fading with
different interleaver sizes
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employing nT ¼ 2 with different modulation schemes under
Rayleigh fading. We can see that the effect of the interleaver
size is more pronounced in BI-STCM systems than in
BI-STBC systems. This is intuitive as the diversity order of
BI-STCM is smaller and thus is more in need of the time
diversity provided by bit interleaving, which increases with
the increasing interleaver size. Therefore the required SNR of
BI-STCM has more dramatic reduction as the interleaver
size increases.

7 Conclusions
In this article, we propose a new union bound on the bit error
probability of BI-ST coded systems employing finite
interleaver sizes over block fading channels. The derivation
is based on the uniform interleaving of coded bits prior to
ST mapping. Tight BER bounds have been derived for BI-
STCM and BI-STBC systems under different fading
distributions. The proposed BER analysis also provides a
novel analytical framework to evaluate the effect of the
interleaver size on the performance of BI-ST coded
systems. Results show that the proposed bound is tight in
medium to high SNR regions. The bound also accurately
characterises the performance of different interleaver sizes
which is a major breakthrough in the analysis of BI-ST
coded systems.
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