
960

&

www.ietdl.org
Published in IET Communications
Received on 4th September 2006
Revised on 14th June 2007
doi: 10.1049/iet-com:20060513

ISSN 1751-8628

Improved regular and semi-random
rate-compatible low-density parity-check
codes with short block lengths
S.F. Zaheer1 S.A. Zummo2 M.A. Landolsi2 M.A. Kousa2
1Telecard Ltd., Karachi, Pakistan
2Electrical Engineering Department, KFUPM, Dhahran 31261, Saudi Arabia
E-mail: zummo@kfupm.edu.sa

Abstract: Powerful rate-compatible codes are essential for achieving high throughput in hybrid automatic repeat
request (ARQ) systems for networks utilising packet data transmission. The paper focuses on the construction of
efficient rate-compatible low-density parity-check (RC-LDPC) codes over a wide range of rates. Two LDPC code
families are considered; namely, regular LDPC codes which are known for good performance and low error
floor, and semi-random LDPC codes which offer performance similar to regular LDPC codes with the additional
property of linear-time encoding. An algorithm for the design of punctured regular RC-LDPC codes that have
low error floor is presented. Furthermore, systematic algorithms for the construction of semi-random RC-LDPC
codes are proposed based on puncturing and extending. The performance of a type-II hybrid ARQ system
employing the proposed RC-LDPC codes is investigated. Compared with existing hybrid ARQ systems based on
regular LDPC codes, the proposed ARQ system based on semi-random LDPC codes offers the advantages of
linear-time encoding and higher throughput.
1 Introduction
A flexible code rate is always desired in the design of practical
error control systems. Rate-compatible (RC) codes are a
nested family of codes where the parity bits of the higher rate
codes are embedded in the parity bits of the lower rate codes
[1]. RC codes have many applications in packet data
communications where adaptive coding and/or unequal error
protection is required [1]. One of the main advantages of
using RC schemes is that all the codes in the family can be
encoded and decoded using a single encoder/decoder pair. In
addition, these schemes provide an efficient framework for
the transmission of information using hybrid automatic repeat
request/forward error correction (ARQ/FEC) protocols.

In this paper, we focus on LDPC codes [2] to design
hybrid ARQ schemes based on RC codes. RC-LDPC
codes were introduced in [3], where it was shown that
puncturing alone cannot provide a family of well-
performing RC-LDPC codes with a wide range of rates.
This is because at higher rates the large number of
The Institution of Engineering and Technology 2008
punctured bits (erasures) paralyses the iterative soft-decision
decoder. To overcome this problem, both puncturing and
extending were used in [3] to create a family of RC codes
from a regular LDPC code. In [4], RC-LDPC codes were
designed based on an optimised irregular LDPC code,
constructed based on progressive edge growth [5]. In [6],
optimal puncturing distributions for irregular LDPC codes
were obtained from the perspective of minimising the code
threshold, which is defined as the signal-to-noise ratio
(SNR) value above which the probability of decoding error
approaches zero, while the probability of decoding error is
non-zero for values of SNR lower than threshold [7]. The
theoretical performance of punctured LDPC codes was
analysed in [6] using the Gaussian approximation approach
[7]. Based on the analysis, a design rule for good
puncturing distributions was proposed, which apply to
LDPC codes of large block lengths in the order of 105 bits.

Recently, in [8], a systematic method was proposed for
finding good puncturing distributions for finite-length
LDPC codes, in which the codeword length is small, which
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi

www.ietdl.org
makes asymptotic analysis techniques (such as density
evolution) do not applicable. The idea is based on the
observation that a punctured node will be recovered with
reliable messages when two conditions are satisfied; namely,
the punctured node has more neighbouring checknodes, and
each of the checknodes has more reliable neighbours
(variable nodes) except for the punctured node. For example,
a punctured variable node that has check nodes whose
remaining neighbouring variable nodes are unpunctured will
have non-zero messages from the checknodes in the first
iteration, and thus it is called a one-step-recoverable (1-SR)
node since it is recovered in the first iteration. The 1-SR
nodes and unpunctured nodes will help recover some of the
remaining punctured nodes in the next iterations. In general,
the punctured nodes recovered in the ith iteration are called
i-SR nodes. Therefore the puncturing rule was to puncture
nodes that require a smaller number of iterations for
recovery, which results not only in less iterations to decode
codewords but also in a better performance at a given code
rate. This method enables the design of punctured finite-
length LDPC codes that outperform randomly punctured
LDPC codes.

In [9], the authors propose another approach for designing
RC-LDPC codes based on the use of desirable node degree
profiles satisfying certain row and column constraints (for the
parity matrices of the RC codes). The authors present
simulation results that demonstrate that their method
produces codes that perform uniformly close to the
Shannon theoretical limits, and also have some
improvement in the frame error rate compared with the
RC-LDPC code families presented in [4]. In this paper,
we design improved RC-LDPC codes for short block
length applications based on the regular and the semi-
random LDPC code structures. The work presented in this
paper differs from the previous work in the following aspects.

† The previous work on RC-LDPC codes with finite block
lengths – with the exception of [8] – focuses on the design of
punctured RC-LDPC codes using random puncturing. In
this work, we design RC-LDPC codes using systematic
algorithms for puncturing that outperform random
puncturing. The criteria used in this paper for the design of
punctured LDPC codes is different from those used in [8].
In particular, for punctured regular LDPC codes, we
propose the criterion of maximisation of the girth average
of the punctured code, whereas for punctured semi-random
LDPC codes, we propose a simple puncturing pattern that
results in high reliability of the punctured variable nodes.

† The RC-LDPC codes designed in [4] are based on
irregular mother codes. The combination of an irregular
mother code and 500 maximum decoder iterations leads to
higher throughput as compared with the regular RC-
LDPC codes of [3]. On the other hand, the RC-LDPC
codes designed in this paper are based on a semi-random
LDPC mother code which has a performance similar to
that of a regular-(3,6) LDPC code (whose H matrix
Commun., 2008, Vol. 2, No. 7, pp. 960–971
: 10.1049/iet-com:20060513
contains 3 ones in each column and 6 ones in each row),
with the extra advantage of the low-complexity encoding.
Results show that the RC-LDPC codes thus designed
outperfrom the RC-LDPC codes of [3].

† We propose an algorithm to determine the girth of the
variable nodes of an LDPC code. The algorithm is based
on the adjacency matrices [10, 11] of the LDPC code.

† Results for RC-LDPC and hybrid ARQ are also
presented for uncorrelated Rayleigh fading channels.

The paper is organised as follows. In Section 2, we present
a brief overview of LDPC codes and type-II hybrid ARQ.
An algorithm for the design of punctured regular RC-
LDPC codes that have large girth average and low error
floors is presented in Section 3. In Section 4, we present
design guidelines for the construction of RC-LDPC codes
based on semi-random LDPC codes. The designed RC-
LDPC codes are applied to a type-II hybrid ARQ scheme,
and the results are presented in Section 5. The main
outcomes of the paper are summarised in Section 6.

2 System model
2.1 Regular LDPC codes

LDPC codes are block codes defined by a sparse parity-check
matrix [2, 12]. A regular (j, l) LDPC code with a rate of
Rc ¼ k/n is defined by an (n 2 k) � n parity-check matrix
having exactly j ones in each column and exactly l ones in
each row, where j , l and both are small compared with
the block length n [12]. The main advantage of regular
LDPC codes is their large minimum distance, and hence
low error floors as compared to turbo and irregular LDPC
codes [13, 14]. The regular-(3,6) LDPC ensemble is the
best regular ensemble [13] in terms of its minimum
distance, and therefore it is used in this paper (as in [3])
for designing regular RC-LDPC codes.

An LDPC code can be represented by a Tanner graph,
which is essentially a visual representation of the parity-
check matrix of the code [12]. Recall that an (n 2 k) � n
parity-check matrix H defines a code in which the n bits of
each codeword satisfy a set of (n 2 k) parity-check equations.
The Tanner graph contains n ‘variable’ nodes, one for each
codeword bit, and (n 2 k) ‘check’ nodes, one for each of the
parity-check equations. For the special case of a (j, l) regular
LDPC code, each bit is involved in j parity-check equations.
Hence, the number of edges emanating from a variable node
is always j and the variable node is said to be of degree j [3].
Similarly, because each parity check equation involves l bits,
the number of edges emanating from each check node is
always l and the check node is said to be of degree l.

Puncturing constructs high-rate codes from low-rate codes
by deleting parity bits [15]. Therefore the transmitter does
not transmit the punctured parity bits. For the decoding of
961

& The Institution of Engineering and Technology 2008

962

& T

www.ietdl.org
a punctured LDPC code, the decoder inserts erasures where
the parity bits are punctured and performs the decoding
algorithm as in a non-punctured case [3]. On the other
hand, extending constructs low-rate codes from high-rate
codes by adding parity bits. At the decoder, the lowest rate
code is used for decoding [4]. LDPC codes are decoded
using an efficient iterative decoding algorithm, where soft
likelihood information about the codeword bits is updated
iteratively. The decoding algorithm, known as belief-
propagation (or the sum-product algorithm) is shown to
closely approximate the optimal maximum likelihood
decoding [16], especially at high SNR.

2.2 Semi-random LDPC codes

For the purpose of encoding, the parity-check matrix H has
to be transformed into the systematic form using Gaussian
elimination [12]. The generator matrix G is then obtained
from the systematic form of the H matrix. This
transformation usually destroys the sparseness of the H
matrix, resulting in a complex encoding process. Recent
contributions have shown that LDPC codes are also
amenable to simple encoding structures [17–19].
Particularly, in [19], a method has been proposed for the
construction of a parity-check matrix which enables linear-
time complexity encoding, while at the same time provides
a performance similar to regular random LDPC codes.
These LDPC codes are called semi-random LDPC codes.
The parity-check matrix is obtained by concatenating a
deterministic sub-matrix H p with a randomly constructed
sub-matrix H d . An example for the parity-check matrix of
a (8,4) semi-random LDPC code is given as

H ¼

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

H p

0
BBBBBBB@

1 0 0 1
0 1 1 0
1 0 1 0
0 1 0 1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

H d

�������������

1
CCCCCCA

(1)

The systematic codeword is expressed as c ¼ [p d], where p is
a vector containing the parity bits and d is a vector containing
the data bits. The parity-check matrix is decomposed as
H ¼ [H p H d]. Since every codeword c should satisfy the
parity-check equations, we can write

H p H d

h i
p d
� �T

¼ 0 (2)

From (3), the parity vector p ¼ {pi} can be calculated [19]
from the information sequence d ¼ {di} as follows

p1 ¼
Xk

j¼1

hd ,1jdj

pi ¼ pi�1 þ
Xk

j¼1

hd ,ijdj (mod 2), i ¼ 2, . . . , n� k

(3)
he Institution of Engineering and Technology 2008
From (3), the codeword of a semi-random LDPC code
can be generated recursively, with a complexity that grows
linearly with the block length.

2.3 Type-II hybrid ARQ

Type-II hybrid ARQ adapts to changing channel conditions
through the use of incremental redundancy [1]. In type-II
hybrid ARQ, a packet is first transmitted using the highest
rate code. If it is not deemed correctly decoded, a NACK
(Negative ACKnowlegement) is fed-back to the transmitter
and a new set of parity bits is provided by the transmitter
(incremental retransmission) [12]. The range of code rates
for a family of RC codes is defined as

R ¼
P

P þ l
, l ¼ 1, . . . , l 0, . . . , L (4)

For a family of codes obtained from a mother code of a
rate P/(Pþ l 0), codes with rates ranging from P/(Pþ 1) to
P/(Pþ l 0 2 1) can be obtained through puncturing. On the
other hand, codes with rates ranging from P/(Pþ l 0 þ 1) to
P/(Pþ L) can be obtained through extending, which is the
transmission of additional parity bits.

3 Regular RC-LDPC codes
RC-LDPC codes based on regular-(3,6) LDPC codes were
designed in [3] by using random puncturing in order to
obtain codes with rates higher than that of the mother
code. However, the puncturing pattern(s) chosen were not
optimised with respect to any criterion. For LDPC codes,
it is desirable to puncture variable nodes having the small
degrees, in order to minimise the number of check nodes
that are affected by erasures. However, in regular LDPC
codes, all variable nodes have the same degree and therefore
the selection of the variable nodes to be punctured cannot
be done on the basis of the variable node degree. One
method of comparing the performance of LDPC codes
with different puncturing patterns would be through
exhaustive search using Monte Carlo simulation, which is
very complex and time consuming. Therefore methods of
comparing different puncturing patterns without resorting
to exhaustive search are required.

For a given block length and degree distribution of the
underlying Tanner graph, the ensemble of LDPC code
with short block length can have considerable performance
variation, specially at high SNR [20]. An efficient heuristic
algorithm for finding good LDPC codes based on the girth
distribution of the Tanner graph was presented in [20]. In
this paper, we propose a new algorithm to compute the
girth distribution of an LDPC code. This algorithm is
then used to obtain puncturing patterns that result in
punctured codes with good performance. We claim that a
search employing the proposed algorithm over an ensemble
of puncturing patterns will result in a puncturing pattern
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi

www.ietdl.org
that outperforms a pattern chosen at random with high
probability.

3.1 Computation of the node girth

The girth of an LDPC code refers to the length of the
shortest loop (or cycle) present in the code’s equivalent
Tanner graph [12]. In [20], this term was used in a wider
sense, where the girth at a variable node u is defined as the
length of the shortest cycle that passes through u. The
girth distribution, g(w), w ¼ 4, 6, . . . , wmax of a Tanner
graph refers to the fraction of the variable nodes with girth
w, where wmax is the maximum girth in the graph. The
girth average for a graph is defined as

Xwmax=2

t¼2

2t � g(2t) (5)

Intuitively, the girth distribution is related to the sub-
optimality of the iterative decoder. It is well known that for
a cycle-free Tanner graph, belief propagation results in
maxium likelihood decoding [21]. The girth of a variable
node indicates the length of the shortest path, or
equivalently the smallest number of iterations, for a
message sent by that node to propagate back to the
node itself. Before this number of iterations is reached,
the ‘belief ’ associated with the node is ‘optimally’
propagated to the rest of the graph. To have a
performance close to the optimal, it is therefore favourable
to make the girth of variable nodes’ as large as possible,
or in other words, to have more variable nodes with larger
girths [20].

In the following, we propose to use the powers of the
adjacency matrix [10, 11] of the code’s parity-check matrix
for the computation of the girth of a given variable node.
Assume a matrix H of size (m � n). Denoting all the
nodes (variable and check nodes) of the code’s graph as
v1, v2, . . . , vp, , where p ¼ mþ n, and define the
adjacency matrix A ¼ [aij] to be the p � p symmetric
binary matrix, with the (i, j)th element defined as

aij ¼
1 if an edge connects vi with vj

0 otherwise

�

The natural ordering of the nodes for an LDPC graph results
[10] in the following relationship

A ¼
0 H

H T 0

� �
(6)

It was shown in [10] that the (i, j)-entry of Aw equals the
number of paths of length w from vi to vj . In the
following, we provide necessary conditions for the node
girth to be of a certain value.
Commun., 2008, Vol. 2, No. 7, pp. 960–971
: 10.1049/iet-com:20060513
Proposition 1: For a matrix H of size (m � n), the girth of a
variable node u is w if

A(w=2)
ij � 2 and A(w=2)�2

ij ¼ 0, 8i and j ¼ uþ m (7)

Proof: In the adjacency matrix corresponding to an LDPC
code with a parity-check matrix H, the rows and columns
numbered 1 to m correspond to the m rows (check nodes)
of H, and the rows and columns numbered (mþ 1) to
(mþ n) correspond to the n columns (variable nodes) of H
[22]. For a variable node u to have a girth w, there should
be at least two paths of length w/2 between the node u
and any other node, that is, A(w=2)

ij � 2. In addition, no
paths of length w=2� 2 should exist between the node u
and any other node, that is, A

(w=2)�2
ij ¼ 0. The latter

condition arises since the presence of paths of length
(w=2� 2) would lead to the variable node having a girth of
(w 2 2) instead of w. A

3.2 Heuristic search for good puncturing
patterns

An algorithm to compute the girth average of an LDPC code
(different from that in 3.1), was used in [20] to compare
randomly constructed LDPC codes. In the following, the
node girth computation discussed in 3.1 will be used to
compute the girth average of LDPC codes, and then to
compare randomly punctured codes of short block lengths
according to their girth averages.

Consider a (n, k) LDPC code, where the corresponding H
matrix has a size of (n 2 k) � n. Puncturing involves the
deletion of parity bits. For example, deleting p parity bits
leads to a (n 2 p, k) code, and the corresponding parity-
check matrix will be of size (n 2 p 2 k) � (n 2 p). Hence,
p rows and and p columns have to be removed from the
original H matrix, as shown in Fig. 1. The rows which are
removed correspond to the non-zero values of the selected
columns [23]. For example, in a regular-(3,6) LDPC code,

Figure 1 Effect of puncturing on the parity-check matrix of
a linear block code (the first bit from the left is punctured
resulting in removing the first column and first row of H).
963

& The Institution of Engineering and Technology 2008

964

&

www.ietdl.org
each column has three rows which could possibly be removed
since the column weight is 3. Consider the case of puncturing
one parity bit. In this case, three different codes may be
obtained since the removal of three different rows (and the
same column for each case) results in three different parity-
check matrices. As the number of the removed columns
increases, the number of codes to be compared increases
exponentially, which renders the comparison of punctured
codes intractable. In addition, obtaining the ‘actual’
punctured matrix is viable only for systematic H matrices.
For non-systematic random matrices, the possibilities for
the punctured matrices are very large, and would increase
with column weight and number of punctured bits.

In order to reduce the complexity of the search algorithm,
the columns corresponding to the punctured bits are removed
from the H matrix, while none of the rows are removed. The
punctured codes thus obtained are then compared using the
girth average criterion. The important question is: how
does this approach affect the comparison between different
puncturing patterns? This question can be answered in the
following two points.

1. Removing only the punctured columns (and none of the
rows) leaves a larger number of ones in the matrix for which
the average girth is being computed, as compared with the
actual punctured matrix (which has both columns and rows
removed), which is expected to yield a larger fraction of
ones, and subsequently more cycles (including short cycles).
Therefore the value of average girth (for the variable nodes)
will be smaller than that of the actual punctured matrix, and
this was indeed observed through simulations.

2. The number of ones removed from the H matrix for each
puncturing pattern is the same since for regular codes the
number of ones removed equals the column weight
�number of bits punctured. Therefore probabilistically
speaking, the number of variable nodes whose girth value is
affected by this method is the same for all puncturing
patterns. This would be supported by the random
construction of the code. Therefore, if the actual punctured
code would give an average girth of x and this method
gives an average girth of x 2 y, then the difference caused
by this method (which is y) would be the same for all
patterns with high probability.

Based on the above discussion, the proposed heuristic
search algorithm can be summarised as follows.

1. Generate a random puncturing pattern, to select the bits
to be punctured.

2. Remove the columns from the parity-check matrix H
corresponding to the punctured bits (but not the rows),
resulting in a matrix Hpunc.

3. Calculate the girth of the variable nodes in Hpunc using
(7).
The Institution of Engineering and Technology 2008
4. Calculate the girth average of the punctured code using
(5).

5. Repeat steps 1–4 a finite number of times, and select the
random puncturing pattern which results in the punctured
code with the maximum girth average.

Another advantage of the heuristic search algorithm is that
it selects the non-punctured variable nodes of the mother
code – represented by the columns of the parity-check
matrix of the mother code that are not removed – to be
those that have large girth. This is desirable since this will
lead to high reliability for the non-punctured variable
nodes, which will subsequently lead to a reliable estimate of
the punctured variable nodes. Note that punctured LDPC
codes are decoded using the parity-check matrix of the
mother code.

Another valid criterion for selecting puncturing patterns is
to select the puncturing pattern resulting in a code with the
minimum number of variable nodes of the minimum girth
[20]. Simulation results showed that this criterion leads to
the same set of punctured codes as those selected via the
maximum girth average criterion. The reason can be
understood by looking at Tables 1 and 2, which show,
respectively, the distribution of the girth of variable nodes
averaged over 500 punctured codes, and the fraction of
variable nodes with different girths for two different
punctured codes. It can be seen that two terms – the
fraction of variable nodes of girth 6 and girth 8 –
completely dominate the distribution. Therefore the
reduction in one term leads to a corresponding increase in
the other term, and this effect is captured by the girth average.

The proposed heuristic search algorithm was used to select a
puncturing pattern that maximises the average girth of the
punctured code. It is shown in [10] that for a rate-1/2,
girth-6, regular-(3,6) LDPC code with block length of 1000
bits, the error floor occurs at BER of ,1028. Since the
difference in the performance of codes with different girths
is manifested in the error floor region at high SNR, the
block length of the code has to be chosen such that the high
SNR region is in the reach of simulation. Hence, the block
length of the mother code is chosen to be n ¼ 256, with 64
parity bits being punctured. The maximum number of
decoder iterations used was set to 25.

Table 1 Distribution of the girth of variable nodes averaged
over 500 punctured codes

Girth Fraction of variable nodes, %

6 69.6

8 30.2

10 0.2
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi

www.ietdl.org
To verify the proposed puncturing algorithm based on the
girth average criterion, a search was performed over 500
randomly punctured codes. Fig. 2 shows the performance
of two punctured codes over an additive white gaussian
noise (AWGN) channel, one code having the maximum
girth average whereas the other having the minimum girth
average from among the 500 random punctured codes. It
can be seen from this figure that there is a significant
difference in performance of the two punctured codes at
high SNR. The punctured code with the minimum girth
has a higher error floor as compared with the punctured
code with the maximum girth average (there is a 1 dB
difference between the two curves at BER of 1026). It is
therefore clear that the maximum girth average criterion
and the method for comparing puncturing patterns is a
viable method for selecting good puncturing patterns from
an ensemble of random puncturing patterns.

3.3 RC regular LDPC codes

In this section, we present an algorithm for obtaining
RC-LDPC codes using the heuristic search algorithm.
Consider a range of desired code rates R1 . R2 . � � � .

RJ . R, where R is the code rate of the mother code. Note

Table 2 Fraction of variable nodes with girths of 6 and 8 for
two different punctured codes

Girth Code 1 Code 2

6 59.3% 58.8%

8 40.6% 41.1%

Average 6.8125 6.687

Figure 2 Performance of regular LDPC codes with two
puncturing patterns that result in punctured codes with
the maximum and the minimum girth average, n ¼ 256
and 64 parity bits being punctured
Commun., 2008, Vol. 2, No. 7, pp. 960–971
: 10.1049/iet-com:20060513
that a code with rate Rj is obtained by puncturing pj bits
from the mother code with rate R. Also, a Rjþ1-rate code
can be obtained from the Rj-rate code by puncturing pjþ1

bits, which is a subset of the pj bits punctured to obtain the
code of rate Rj. Regular RC-LDPC codes that utilise
puncturing patterns selected using the heuristic search
algorithm can be obtained by the following algorithm

1. Select the number of punctured parity bits p1 which yield a
rate-R1 code. Generate random puncturing patterns of size p1.
Perform heuristic search to obtain the best puncturing pattern
corresponding to p1 punctured bits.

2. Puncturing patterns for obtaining the rate-R2 can be
obtained by selecting random subsets of size p2 from the
pattern selected in the previous step (of size p1), and
performing heuristic search over them.

3. The puncturing patterns required to obtain the codes with
rates R3, ::, RJ may be obtained in a similar manner as in
step 2.

4 Semi-Random RC-LDPC Codes
In this section, we consider the design of RC-LDPC codes
based on the semi-random structure through puncturing
and/or extending.

4.1 Puncturing

The structure of a semi-random parity-check matrix is shown
in (1). The submatrix on the left corresponds to the parity
bits, whereas the submatrix on the right corresponds to the
data bits. The puncturing of an LDPC code involves the
deletion of coded bits from the codeword and replacing
them by erasures at the decoder. Since the parity bits have
degree 2, while the degree of the data bits is .2, we chose
to puncture some of the parity bits to minimize the
degradation in the performance because of puncturing. In
the following, we examine three puncturing schemes,
namely, ‘alternate’ which refers to puncturing alternate
parity bits, ‘successive’ which refers to puncturing successive
parity bits, and ‘random’ which refers to puncturing a
random pattern of parity bits.

Fig. 3 shows the message passing during the decoding of
punctured semi-random LDPC codes. It can be seen that
for the case of successive or random puncturing, a
successive group of parity bits may be erased. As the
decoding proceeds iteratively, after the first (and successive)
iteration(s) the log-likelihood ratio (LLR) values of the
punctured parity bits for the case of alternate puncturing
will be larger than the LLR values of punctured parity bits
using successive or random puncturing. It is well known
that a large LLR magnitude for a variable node implies
higher reliability as compared with the reliability of a
variable node with a smaller LLR magnitude [24]. Hence,
the LLRs of the punctured parity bits for the case of
965

& The Institution of Engineering and Technology 2008

966

& T

www.ietdl.org
alternate puncturing converge in a smaller number of
iterations as compared with the other two puncturing
schemes, causing the LLRs of data bits to converge to their
correct values (in the probabilistic sense) in a smaller
number of iterations. This observation is confirmed in
Fig. 4 which shows the evolution of LLR magnitudes of
the punctured bits for the different puncturing schemes. In
this figure, we can see that the average LLR values of the
parity bits punctured ‘alternately’ is larger than that for
the other puncturing schemes. Therefore it is expected that
the performance of the ‘alternately’ punctured semi-random
LDPC codes is better than punctured semi-random LDPC
codes that are obtained by using other puncturing schemes,
which is confirmed by the simulation results shown in Fig. 5.

Figure 3 Message-passing during decoding of punctured
semi-random LDPC code corresponding to the H matrix of
(1)

Figure 4 Evolution of LLR magnitudes of punctured variable
nodes for semi-random LDPC Code, (mother code: n ¼ 256,
R ¼ 1/2, punctured code: R ¼ 2/3) at Eb/N0 ¼ 2.5 dB
he Institution of Engineering and Technology 2008
For illustration purposes, we compare punctured semi-
random LDPC codes with randomly punctured regular-
(3,6) codes. Note that the block length of the mother code
and code rates obtained through puncturing are the same as
in [3]. The semi-random LDPC codes are constructed
based on the guidelines presented in [19], and the four
loops are removed using the algorithm presented in [25].
For the semi-random codes, results for the alternate and
random puncturing patterns are shown, whereas for regular
codes the results are shown for the random puncturing
pattern. Since the simulation is restricted to the low SNR
region, the heuristic search algorithm proposed in Section 3
is not used for the design of the randomly punctured
regular codes.

The comparison results for AWGN and the uncorrelated
Rayleigh fading channels are shown in Figs. 6 and 7,
respectively. In these figures, Alternate denotes alternate
puncturing pattern and Random denotes a random pattern
of parity bits. From these figures, it can be seen that while
the mother codes for the regular-(3,6) and the semi-
random codes give similar performance, the performance of
the punctured regular-(3,6) code is worse that that of the
punctured semi-random code, and the difference in
performance increases with increasing the number of
punctured parity bits. This is because the punctured bits in
the semi-random code correspond to degree-2 nodes,
whereas they correspond to degree-3 nodes in the regular
code. While one punctured bit of the semi-random code
affects two check nodes, the puncturing of one bit of the
regular-(3,6) code affects three check nodes. This makes
the RC semi-random codes obtained via puncturing
outperform those obtained by puncturing regular codes,
when the mother codes of both have similar performance.
Furthermore, the performance gain of alternately punctured
semi-random codes over the randomly punctured semi-
random codes increases with increasing the number of

Figure 5 Performance of punctured semi-random LDPC
codes over the AWGN channel, n ¼ 256,max-iterations ¼ 50
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi

www.ietdl.org
punctured parity bits. This is due to the reason illustrated in
Fig. 3, where the puncturing effect becomes more severe as
the number of punctured bits increase.

It should be noted that the heuristic search algorithm that
maximises the average girth in Section 3 can be used to
compare randomly punctured semi-random LDPC codes.

Figure 7 Performance of punctured semi-random and
regular codes over the Rayleigh fading channel with code
rates – from left to right – 8/14, 8/13, 8/12 and 8/11,
mother code is of rate 8/14 with n ¼ 1792, SR denotes
semi-random LDPC, ‘Reg’ denotes regular LDPC,, ‘p’
denotes the number of punctured parity bits, ‘p ¼ 0’
denotes the mother code, max-iterations ¼ 50

Figure 6 Performance of punctured semi-random and
regular codes over the AWGN channel with code rates –
from left to right – 8/14, 8/13, 8/12 and 8/11, mother
code is of rate 8/14 with n ¼ 1792, SR denotes semi-
random LDPC, ‘Reg’ denotes regular LDPC, ‘p’ denotes the
number of punctured parity bits, ‘p ¼ 0’ denotes the
mother code, max-iterations ¼ 50
Commun., 2008, Vol. 2, No. 7, pp. 960–971
: 10.1049/iet-com:20060513
However, the code(s) that would be selected by this
algorithm would outperform other randomly punctured
codes only in the high SNR region. Moreover, the results
presented show that the alternate puncturing outperforms
random puncturing in the region of low SNR, and
therefore the application of the heuristic search algorithm
to punctured semi-random LDPC codes is obviated.

From our observation through numerical experiments, it
was concluded that the following guidelines are suitable for
the design of punctured LDPC codes:

† It is desirable to puncture variable nodes of the smallest
degree in order to minimise the performance degradation.
This can be applied for LDPC codes with non-uniform
variable node degree distribution such as semi-random
LDPC codes.

† If the degrees of the variable node are equal, puncturing
can be performed such that the average girth of the
punctured code is maximised. This can be achieved via the
heuristic search algorithm presented in Section 3.

4.2 Extending

For a matrix H of size (m � n) representing the original code,
each level of extension of size u (adding u parity bits) will add
u additional rows and u addtional columns to H. The
extended matrix Hext will be of size (mþ u) � (nþ u). As
an example, Fig. 8 shows the (n ¼ 11, k ¼ 7) parity-check
matrix obtained after extending the (n ¼ 8, k ¼ 4) semi-
random LDPC matrix of (1) by adding three parity bits.
For one level of extension of a semi-random LDPC code,
the following steps are proposed.

† Generate H pnew
of size (mþ u)� (mþ u), with the

particular ‘staircase’ structure that is required for the
deterministic part of a semi-random parity-check matrix as
in (1).

† Generate H dnew
which is a vertical concatenation of two

sub-matrices: H d from the unextended matrix, and a matrix
H sparse of size (u)� (n� m).

Figure 8 Illustrative example for extending of semi-random
LDPC codes
967

& The Institution of Engineering and Technology 2008

968

&

www.ietdl.org
† The concatenation of H pnew
and H dnew

yields a semi-
random parity-check matrix with one level of extension
(Fig. 8).

The submatrix H sparse is the only part of the extended
matrix that can be designed using different methods, since
the rest of the matrix is either identical to parts of the
unextended matrix, or follows a deterministic construction
approach to comply with the standard format of a semi-
random parity-check matrix. In the following, we propose
two schemes for the design of the H sparse matrix. One
scheme is reffered to as the ‘Extended-identity’ approach
since it involves the use of identity matrices, and the other
scheme is called the ‘Extended-Permuted’ approach since it
involves the use of a matrix which is a random permutation
of a particular matrix. The two methods are discussed as
follows.

(1) Extended-identity approach: The motivation of using
identity matrices for the design of H sparse is that it leads to
a simple and deterministic method of extending a semi-
random parity-check matrix. It maintains the sparseness
of the extended matrix, and does not lead to the creation
of small loops. In this approach, H sparse for each level of
extension is formed by the concatenation of an identity
matrix of size u� u and a matrix of zeros of size
u� (n� m� u), where the size of the non-extended
matrix is m� n. Consider extending a semi-random
LDPC code with a parity-check matrix of the form

H ¼ [H pjH d] (8)

Using the extended-identity approach, the parity-check
matrix of the extended code after the first-level extension
follows the form

H ext,1 ¼

1 0
1 1

. .
. . .

.

0 1 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H pnew ,1

0
BBBBBBBB@

H d

I 0 0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
H dnew ,1

�������������

1
CCCCCCCA

(9)

where I is an identity matrix of size u� u. Continuing on
the same manner, the parity-check matrix of the
extended code after the second-level extension is given by

H ext,2 ¼

1 0
1 1

. .
. . .

.

. .
. . .

.

0 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H pnew ,2

0
BBBBBBBBBBB@

H d

I 0 0
0 I 0

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
H dnew ,2

���������������

1
CCCCCCCCCA

(10)
The Institution of Engineering and Technology 2008
The extended-identity approach can be used as explained
above to yield extended semi-random LDPC codes of any size.

(2) Extended-permuted approach: The extended-identity
approach constructs extended semi-random LDPC codes
which have only one connection between the additional
parity-check equations and the variable nodes representing
the data bits. Intuitively, increasing the connections
between the additional parity-check equations and the
variable nodes – while maintaining the sparseness of the
matrix – is expected to lead to a better performance. This
notion leads to the extended-permuted approach, in which
H sparse for each level of extension is constructed by the
column permutations of a particular matrix H perm. This
approach follows the method of constructing regular codes
introduced by Gallager [2], where a parity-check matrix of
an LDPC code is formed by the vertical concatenation of a
number of submatrices. An example of the matrix H perm

which gives good empirical is a matrix in which each row
contains two ones as follows

H perm ¼

1 1 0 0 : :
0 1 1 0 : :
0 0 1 1 : :
: : : : : :
: : : : : :

0
BBBB@

1
CCCCA (11)

The matrix H sparse for each level of extension corresponds to a
particular column permutation of H perm in (11). We have
also tested extending with a H perm matrices that contain
three and four ones in each row, but the performance is
very similar to the H perm with two ones in each row.
Therefore the latter was preferred since it enables lower
encoding and decoding complexities.

Consider a semi-random LDPC code whose parity-check
matrix of the form in (8), the parity-check matrix of the
extended code with the first-level extension employing the
extended-permuted approach follows the form

Hext,1 ¼

1 0
1 1

. .
. . .

.

0 1 1|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
H pnew ,1

0
BBBBBBBB@

H d

H perm,1

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
H dnew,1

�������������

1
CCCCCCCA

(12)

Continuing on the same manner, the parity-check matrix of
the extended code with the second-level extension is given by

H ext,2 ¼

1 0
1 1

. .
. . .

.

. .
. . .

.

0 1 1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H pnew,2

0
BBBBBBBBBBB@

H d

H perm,1

H perm,2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
H dnew ,2

���������������

1
CCCCCCCCCA

(13)
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi

www.ietdl.org
Note that the former approach creates four loops during
the extending process, which have to be removed using the
loop removal algorithm [25]. This leads to higher
complexity of the extended-permuted approach, whereas
the extended-identity approach has lower complexity
because the format for extension is deterministic and the
extension does not result in the creation of four loops.

(3) Numerical results: Fig. 9 shows the performance of the two
proposed extending approaches over the AWGN channel.
From this figure, we can see that the extended-permuted
approach offers a 0.2–0.3 dB performance advantage over
the extended-identity approach. In addition, the difference
in performance between the extended-permuted approach
and the extended-identity approach increases with increasing
the levels of extension. This can be explained as follows. An
extended matrix resulting from extension using the
extended-permuted approach is relatively denser (the parity-
check matrix has more ones) as compared with an extended
matrix resulting from extension using the extended-identity
approach. This is due to the fact that extended-identity
approach adds a single one per row in H sparse, whereas the
extended-permuted adds two ones per row H sparse. This
leads to a slightly larger average variable node degree for the
extended-permuted approach as compared with the
extended-identity approach. From simulations, it was found
that the average variable node degree of the lowest rate
matrices used is 3.1 for the extended-identity approach and
3.4 for the extended-permuted approach. As explained
above, the difference in the average variable node degree
leads to a slightly better performance for the extended-
permuted approach, since variable nodes of comparatively

Figure 9 Performance of extended semi-random LDPC
codes using the extended-identity and extended-permuted
approaches over the AWGN channel, code rates – from
right to left – 8/14, 8/15, 8/17 and 8/20, mother code is of
rate 8/14 with n ¼ 1792
Commun., 2008, Vol. 2, No. 7, pp. 960–971
: 10.1049/iet-com:20060513
larger degrees are connected to more check nodes, which
improves the performance of the iterative decoder.

5 Type-II hybrid ARQ
In this section, we present the results for type-II hybrid ARQ
systems employing the RC-LDPC codes designed in
Sections 3 and 4. For each SNR point, simulation is
stopped when at least 200 codeword errors are obtained.
Figs. 10 and 11 show the throughput for ARQ schemes
employing punctured semi-random and regular LDPC
codes, over AWGN and uncorrelated Rayleigh fading
channels, respectively. The mother code is a rate-8/14 code
with a block length of 1792 bits from which codes of rates
8/13, 8/12 and 8/11 are obtained via puncturing. We
observe that codes based on the semi-random family of
LDPC codes outperform codes based on the regular-(3,6)
family. This is because punctured semi-random LDPC
codes outperfom punctured regular-(3,6) codes, as was
shown in Figs. 6 and 7.

Fig. 12 shows the throughput of ARQ schemes
employing the best-performing semi-random RC-LDPC
codes designed in this paper (using alternate puncturing
and extended-permuted extending), and regular codes
from [3] over the AWGN channel. The mother code is a
rate-8/14 code with a block length of 1792 bits. There
are 1024 data bits in each frame. Codes with rates 8/13
to 8/11 are designed via puncturing, whereas codes with
rates 8/15 to 8/20 are designed via extending. It can be
seen that the ARQ schemes employing semi-random
codes outperform those employing regular codes at high

Figure 10 Throughput comparison of ARQ schemes based
on punctured semi-random LDPC and regular LDPC codes
over the AWGN channel, the mother code is a rate-8/14
code with n ¼ 1792 (SR: semi-random codes, Reg:
regular-(3,6) codes, Alternate: alternate puncturing,
Random: random punctured, max-iterations ¼ 50)
969

& The Institution of Engineering and Technology 2008

97

&

www.ietdl.org
SNR by up to 0.3–0.4 dB. At high SNR, the codes
obtained via puncturing dominate the performance, and
punctured semi-random codes significantly outperform
punctured regular-(3,6) codes as shown in Fig. 6. Also, it
can be seen that both curves reach the maximum
throughput value of �0.727 at the highest SNR. This is
the maximum attainable throughput since it is the

Figure 11 Throughput comparison of ARQ schemes based
on punctured semi-random LDPC and regular LDPC codes
over the Rayleigh fading channel, the mother code is a
rate-8/14 code with n ¼ 1792, (SR: semi-random codes,
Reg: regular-(3,6) codes, Alternate: alternate puncturing,
Random: random punctured, max-iterations ¼ 50)

Figure 12 Throughput comparison of ARQ schemes based
on the proposed semi-random RC-LDPC codes designed in
this paper and regular LDPC codes from [3], the mother
code is a rate-8/14 code with n ¼ 1792, code rates 8/13
to 8/11 are obtained through alternate puncturing and
code rates 8/15 to 8/20 are obtained through extending
using the extended-permuted approach
0
The Institution of Engineering and Technology 2008
maximum code rate (8/11 ’ 0.727) among the family of
RC codes being employed.

6 Conclusions
In this paper, an algorithm was proposed for the design of
punctured regular LDPC codes that have low error floor.
The algorithm is based on the concept of maximising the
girth average of the underlying Tanner graph of the code.
Since increasing the girth of an LDPC code leads to an
improved performance, the algorithm selects the puncturing
patterns that result in punctured codes with a large girth
average. Simulation results verify that the puncturing
patterns selected using this algorithm outperform randomly
punctured codes.

Furthermore, a puncturing pattern was proposed for the
design of punctured semi-random LDPC codes that leads
to punctured codes that outperform randomly punctured
semi-random LDPC codes. Two approaches for designing
extended semi-random RC-LDPC codes were also
proposed. A type-II hybird ARQ scheme based on the
semi-random RC-LDPC codes designed in this paper was
shown to outperform an existing scheme based on regular
RC-LDPC codes. Additionally, the proposed hybrid ARQ
scheme based on semi-random RC-LDPC codes offers the
major advantage of linear-time encoding, in addition to
performance gains.

7 Acknowledgments
The authors would like to acknowledge the support provided
by King Fahd University of Petroleum and Minerals
(KFUPM) under Grant FT040005.

8 References

[1] HAGENAUER J.: ‘Rate-compatible punctured convolutional
codes (RCPC codes) and their applications,’, IEEE Trans. Inf.
Theory, 1988, 36, pp. 389–400

[2] GALLAGER R.G.: ‘Low-density parity-check codes,’, IRE
Trans. Inf. Theory, 1962, IT-8, pp. 21–28

[3] LI J., NARAYANAN K.: ‘Rate-compatible low-density parity-
check codes for capacity-approaching ARQ scheme in
packet data communications’. Int. Conf. Comm., Internet,
and Info. Tech. (CIIT), November 2002

[4] YAZDANI M., BANIHASHEMI A.: ‘On construction of rate-
compatible low-density parity-check codes’, IEEE Commun.
Lett., 2004, 8, (3), pp. 159–161

[5] HU X.-Y., ELEFTHERIOU E., ARNOLD D.-M.: ‘Regular and irregular
progressive edge-growth tanner graphs’, IEEE Trans. Inf.
Theory, 2005, 51, pp. 386–398
IET Commun., 2008, Vol. 2, No. 7, pp. 960–971
doi: 10.1049/iet-com:20060513

IET
doi:

www.ietdl.org
[6] HA J., KIM J., McLaughlin S.: ‘Rate-compatible puncturing of
low-density parity-check codes’, IEEE Trans. Inf. Theory,
2004, 50, (11), pp. 2824–2836

[7] CHUNG S., FORNEY G.D. JR., RICHARDSON T.J., URBANKE R.: ‘On the
design of low-density parity-check codes within 0.0045 dB
of the Shannon limit’, IEEE Commun. Lett., 2001, 5,
pp. 58–60

[8] HA J., KIM J., KLINC D., McLaughlin S.: ‘Rate-compatible
punctured low-density parity-check codes with short
block lengths’, IEEE Trans. Inf. Theory, 2006, 52, (2),
pp. 728–738

[9] BI D., PEREZ L.: ‘Rate-compatible low-density parity-check
codes with rate-compatible degree profiles’, IEE Electron.
Lett., 2006, 42, (1), pp. 41–43

[10] McGowan J., WILLIAMSON R.: ‘Loop removal from LDPC
codes’. Information Theory Workshop, Paris, France, 31
March–4 April 2003

[11] ALSUWAIYEL M.H.: ‘Algorithms: Design Techniques and
Analysis’ (World Scientific, 1999)

[12] LIN S., COSTELLO D.: ‘Error Control Coding’ (Prentice Hall,
2004, 2nd edn.)

[13] RICHARDSON T.J., URBANKE R.: ‘Design of capacity
approaching irregular low-density parity-check codes’, IEEE
Trans. Inf. Theory, 2001, 47, (2), pp. 619–637

[14] LUBY M.G., MITZENMACHER M., SHOKROLLAHI M.A., SPIELMAN D.A.:
‘Improved low-density parity-check codes using irregular
graphs’, IEEE Trans. Inf. Theory, 2001, 47, (2), pp. 585–598

[15] CLARK G., CAIN J.: ‘Error-correcting coding for digital
communications’ (Plenum Press, 1981)
Commun., 2008, Vol. 2, No. 7, pp. 960–971
10.1049/iet-com:20060513
[16] MACKAY D.J.C., NEAL R.M.: ‘Good error-correcting codes
based on very sparse matrices’. Cryptography and Coding.
5th IMA Conf. in BOYD C. (ED.) LNCS Berlin, 1995,
vol. 1025, (Springer), pp. 100–111

[17] RICHARDSON T.J., URBANKE R.: ‘Efficient encoding of low-
density parity-check codes’, IEEE Trans. Inf. Theory, 2001,
47, pp. 638–656

[18] JOHNSON S., WELLER S.: ‘A Family of irregular LDPC codes
with low encoding complexity’, IEEE Commun. Lett., 2003,
7, pp. 79–81

[19] PING L., LEUNG W.K., PHAMDO N.: ‘Low-density parity-check
codes with semi-random parity check matrix’, IEE
Electron. Lett., 1999, 35, (1), pp. 38–39

[20] MAO Y., BANIHASHEMI A.H.: ‘A heuristic search for good low-
density parity-check codes at short block lengths’. IEEE Int.
Conf. Communications, June 2001

[21] ETZION T., TRACHTENBERG A., VARDY A.: ‘Which codes have
cycle- free tanner graphs?’, IEEE Trans. Inf. Theory, 1999,
45, pp. 2173– 2181

[22] BALAKRISHNAN V.K.: ‘Schaum’s outline of graph theory’
(McGraw-Hill, 1997)

[23] MORELOS-ZARAGOZA R.H.: ‘The art of error correcting
coding’ (John Wiley, 2002)

[24] BARRY J.: ‘Digital communication’ (Springer, 2003, 3rd
edn.)

[25] ZAHEER S.F.: ‘Improved rate-compatbile low-density
parity-check codes with applications to wireless channels’,
MS Thesis, King Fahd University of Petroleum and
Minerals, Dhahran, KSA, 2006
971

& The Institution of Engineering and Technology 2008

