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Abstract: New union bounds are derived for space–time block coded systems over Rayleigh fading channels. Both
maximal ratio combining and generalised selection combining are considered as combining schemes at
the receiver. The union bounds are easy to be evaluated using the transfer function of the code. Furthermore,
the bounds are general to any coding scheme with a known weight distribution. Results show that the
proposed union bounds are tight to simulation results for wide ranges of diversity orders and signal-to-noise
ratio values.
1 Introduction
Diversity combining is an effective method to mitigate the
effect of fading in wireless communication systems.
Diversity can be obtained using frequency, time, space and
polarisation. Diversity improves the performance of
communication systems by providing M independently
faded copies of the transmitted signal such that the
probability that all these copies are in a deep fade is low.
The diversity gain is obtained by combining the received
copies at the receiver. The most known diversity combining
schemes are the maximal-ratio combining (MRC), equal-
gain combining (EGC), selection combining (SC) and the
generalised selection combining (GSC).

Multipath fading is frequently modelled as a Rayleigh
distribution. The performance of coded systems with MRC
over Rayleigh fading channels with diversity was analysed in
[1]. In particular, a union bound was derived in [1] and
represented in the product form which allows the use of the
transfer function of the code. Several bounds on the error
probability of turbo codes over Rayleigh fading channels were
presented in [2]. Existing union bounds for coded systems
with MRC diversity rely on the use the integral representation
of the erfc(.) function, which results in a bound that needs
numerical integration to be evaluated, see as an example [3].
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Another approach to diversity is to use multiple antennas
at the transmitter [4, 5]. Space-time block coding (STBC)
was proposed by Alamouti [6] to provide diversity at the
transmitter. This idea was soon generalised by Tarokh et al.
[7] to a general number of transmit antennas. The
performance of STBCs with receive diversity was analysed
in [8, 9] for Rayleigh fading channels. Union bounds on
the bit error probability of coded STBC systems with
receive diversity were derived in [10]. The bounds are very
loose since they are based on approximating the probability
density function (pdf) of the random variable representing
the maximum of the receive diversity branches. Therefore it
is of interest to derive tight union bounds for the bit error
probability of coded STBC systems with receive diversity.
In this work, we consider coded STBC systems with MRC
or GSC at the receiver.

We derive tight union bounds on the bit error probability
of coded STBCs employing MRC or GSC at the receiver
over Rayleigh fading channels. The bounds for MRC will
be represented in the product form allowing efficient
computation of the bound using the transfer function of
the code. On the other hand, the bound for GSC will be
based on the transfer function of the code and simple
to evaluate using the gauss-leguerre integration (GLI)
rule [11].
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2 System model
The transmitter in a coded STBC system consists of a binary
encoder (e.g. convolutional or turbo), an interleaver, a
modulator and a STBC. The encoder might be
convolutional, turbo, trellis-coded modulation (TCM) or
any other coding scheme. The encoder encodes a block of
K information bits into a codeword of L symbols. The
code rate is denoted as Rc ¼ K/L.

The transmitter is equipped with N transmit antennas and
M receive antennas. After encoding and interleaving, each
group of N signals is mapped into an N � N transmission
matrix G. For the case of N ¼ 2, G is the Alamouti code
[6] given by

G ¼
s0 s1
�s�1 s�0

� �
(1)

where s0 and s1 represent two symbols to be transmitted
during a it time slot, which is the transmission interval of G
of duration NT, where T is the symbol duration. The ith
row of G is transmitted over the N transmit antennas in the
ith time interval of the time slot. More examples of real
and complex orthogonal matrices were presented in [7]. In
order to be able to detect STBCs, the rows of the
transmission matrix have to be orthogonal. For real signal
constellations, N � N matrices that carry N different
signals can be constructed. In this case, the resulting STBC
is said to be full-rate. However, for complex signal
constellations, the construction of orthogonal full-rate
matrices is not possible for N . 2. Therefore reduced-rate
complex STBCs can be constructed for N . 2.

To be able to detect STBCs, the fading process from each
transmit antenna should remain constant for at least one time
slot, that is, NT seconds. Let Gl be the transmission matrix in
the lth time slot of the codeword. The corresponding received
vector at the jth receive antenna is

yl , j ¼
ffiffiffiffiffi
Es

p
Glhl , j þ zl , j (2)

where Es is the average received signal energy at each receive
antenna, zl, j is a length-N column noise vector at the jth
receive antenna with a distribution CN (0, N0I ) and I
denotes the N � N identity matrix. The vector hl, j contains
the channel gains from the transmit antennas in time slot l
to the jth receive antenna and is modelled as CN (0, I ).
The fading processes between different pairs of transmit–
receive antennas are assumed to be independent and
identically distributed (i.i.d).

The decoder chooses the codeword S that maximises the
metric

m(Y , S) ¼
XL=N
l¼1

XM
j¼1

Re{ y�l , jGl , jhl , j} (3)
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where (.)� denotes the complex conjugate of a complex vector.
Signal vectors received at different receive antennas within a
time slot are combined such that the performance is
improved. In MRC, the received signal vectors at different
diversity branches are weighted by the corresponding
channel gains. The resultant signal-to-noise ratio (SNR) at
time slot l of the codeword is given by Gl ¼ EsPM

i¼1 al ,i=N0, where al,i ¼ khl,ik
2 is the norm of the vector

hl,i. In GSC, the receiver selects the largest Mc receive
diversity branches among the M branches and combines
them using MRC. If we arrange the norms al,1, . . . , al,M
in a descending order al,(1) � al,(2) � � � � � al,(M ), then
SNR at the output of the GSC is given by Ll ¼ EsPMc

i¼1 a
2
l ,(i)=N0.

The pairwise error probability (PEP) is defined as
the probability of decoding a codeword S as another
codeword Ŝ. In the following, the PEP is written in the
product form as

P(S ! Ŝ) � Kc �
YL
l¼1

W (sl , ŝl ) (4)

where Kc is a tightening constant that does not depend on
the error sequence and W (sl , ŝl ) is the error weight profile
between a decoded symbol ŝl and the transmitted symbol
sl. ŝl . This form enables the use of the transfer function of
the code to evaluate the union bound on the bit error
probability. It is worth mentioning that the results derived
in this paper apply to STBCs drawn from orthogonal
designs [7]. In the case of a non-full-rate STBC, there
will be a reduction in the SNR because of the reduction
in the STBC rate.

3 Maximal-ratio combining
The conditional PEP for MRC can be written as

P(S ! ŜjH ) ¼
1

2
erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

dlgl

vuut
0
@

1
A (5)

where H is a matrix that contains the fading gains affecting a
codeword, dl ¼ Esjsl � ŝl j

2=4N0 and gl ¼
PM

i¼1 h
�
l ,ihl ,i,

where * denotes the transpose conjugate of a vector. Since
STBC is used with the simple detection scheme in [6], the
random variable gl is an NM-Erlang random variable with
a pdf [12] given by

fgl (g) ¼
1

(NM � 1)!
gNM�1e�g g � 0 (6)

The unconditional PEP is found by averaging (5) over the
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& The Institution of Engineering and Technology 2008



540

&

www.ietdl.org
statistics of gl’s as

P(S ! Ŝ) ¼
1

2

ð1
0

� � �

ð1
0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
l¼1

dlgl

vuut
0
@

1
A

fg(g1) � � � fg(gL) dg1 � � � dgL (7)

Define

dl ¼
dl

1þ dl
and vl ¼ gl (1þ dl ) (8)

By using the change of variables in (8) and re-arranging terms
inside the integral [1], the PEP becomes

P(S ! Ŝ) ¼
1

2

Y
l[h

1

(1þ dl )
NM

" #

�

ð1
0

� � �

ð1
0

erfc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXLh

l¼1

dlvl

vuut
0
B@

1
CA

� exp
XLh

l¼1

dlvl

" #

� fv(v1) � � � fv(vLh
) dv1 � � � dvLh

(9)

where fv(vl) is the pdf of the variable vl, h ¼ {l :sl = ŝl } and
Lh ¼ jhj is the minimum time diversity of the code. Note
that in (9), we assumed, without the loss of generality, that
the first Lh elements of the error codeword belong to the
set h defined above. Furthermore, in (9), the pdfs fv(vl)
follow the same form of(6) with vl replacing g. Note that
the variables fvlg that appeared in (9) are different from the
variables fvlg defined in (8) because terms were re-arranged
to yield (9). Define dm ¼ minfdl, l [ hg, and note thatP

l[h dlvl � dm
P

l[h vl . Since erfc(x)ex
2

is monotonically
decreasing function for x � 0, then the PEP can be upper
bounded as

P(S ! Ŝ) �
1

2

Y
l[h

1

(1þ dl )
NM

" #

�

ð1
0

erfc
ffiffiffiffiffiffiffiffiffi
dmV

p� �
edmVfV(V) dV (10)

where V ¼
PLh

l¼1 vl is an NMLh-Erlang random variable
with a pdf given by

fV(V) ¼
1

(NMLh � 1)!
VNMLh�1e�V V � 0 (11)

Substituting (11) in (10) results in

P(S ! Ŝ) �
J

2

YLh

l¼1

1

(1þ dl )
NM

" #
(12)
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where

J ¼
1

(NMLh � 1)!

ð1
0

erfc
ffiffiffiffiffiffiffiffiffi
dmV

p� �

�V
NMLh�1eV(dm�1) dV (13)

In the following, the integral in (13) is simplified using two
approaches resulting in two upper bounds on the PEP.

3.1 Bound 1

Using (6.286) of [13], the integral in (13) can be evaluated as

J ¼
G(NMLh þ 0:5)ffiffiffiffi

p
p

NMLhd
NMLh
m (NMLh � 1)!

2 F1

� NMLh, NMLh þ 0:5; NMLh þ 1; 1�
1

dm

� �
(14)

where G(.) is the gamma function and 2F1(:, :; :;:) is the
Gaussian confluent hypergeometric function defined in
[13]. Defining x ¼ 12 (1/dm) and using the relation

2F1(a, b; g; z) ¼ (1� z)�a
2 F1(a,g� b; g; z=(z� 1))

results in

J ¼
G(NMLh þ 0:5)ffiffiffiffi
p

p
d
NMLh
m (NMLh)!

(1� x)�NMLh

� 2 F1 NMLh, 0:5; NMLh þ 1;
x

x� 1

� �
(15)

Using the relation 2F1(NMLh, 0:5; NMLh þ 1; x=x �1) ¼

NMLh(x=(x� 1))�NMLhBx=(x�1)(NMLh, 0:5) and

substituting (15) in (12), the PEP can be finally simplified to

P(S ! Ŝ) �
G(NMLh þ 0:5)

2
ffiffiffiffi
p

p
(NMLh � 1)!

(1� dm)
�NMLh

� Bx=(x�1)(NMLh, 0:5)
YLh

l¼1

1

(1þ dl )
NM

(16)

where Bx(.,.) is the incomplete beta function defined in[13].
Using the transfer function of the code under consideration,
the union bound on the bit error probability is finally
written as

Pb �
1

k

G(NMLh þ 0:5)

2
ffiffiffiffi
p

p
(NMLh � 1)!

(1� dm)
�NMLhBx=(x�1)

� (NMLh, 0:5)
@T (D, I )

@I

����
I¼1,D¼(1þdl )

�NM
(17)

where k is the number of input bits to the encoder at each
trellis transition and T (D, I ) is the transfer function of the
code. Here, at each transition in the code trellis, the
exponentof D represents the distance from the zero symbol,
whereas the exponent of I represents the weight of the
information sequence that caused this trellis transition.
IET Commun., 2008, Vol. 2, No. 4, pp. 538–544
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3.2 Bound 2

Making the change of variable j ¼ V(12 dm) and using the
integral form of the erfc(.) function, the integral in (13) can
be written as

J ¼
1

(1� dm)
NMLh

ð1
0

ffiffiffiffi
2

p

r ð1 ffiffiffiffiffi
2nj

p e�t 2=2 dt

 !

�
jNMLh�1e�j

(NMLh � 1)!
dj (18)

where n ¼ dm/12 dm. Changing the order of integration
and using the properties of the number of arrivals in a
Poisson random process as in [2], (18) simplifies to

J ¼

ffiffiffi
2

p

ffiffiffiffi
p

p
(1� dm)

NMLh

ð1
0

e�t
2=2

�
X1

r¼NMLh

1

r!
e�t 2=2n t 2

2n

 !r
2
4

3
5dt (19)

which can be evaluated as

J ¼

ffiffiffiffiffiffi
dm

p
(1� dm)

NMLh

X1
r¼NMLh

1� dm
4

� �r 2r

r

� �
(20)

Following [2] and substituting (20) in (10), the PEP can be
finally upper bounded as

P(S ! Ŝ) �
4�NMLh

2
ffiffiffiffiffiffi
dm

p 2NMLh

NMLh

 !YLh

l¼1

1

(1þ dl )
NM

(21)

Using the transfer function of the code, the bit error
probability an be upper bounded by

Pb �
1

k

4�NMLh

2
ffiffiffiffiffiffi
dm

p 2NMLh

NMLh

 !
@T (D, I )

@I

����
I¼1,D¼(1þdl )

�NM
(22)

For illustration, the proposed union bounds were evaluated
for two STBCs systems. The first one employs a rate-1/2
(5,7) convolutional code, whereas the second uses a eight-
state eight PSK TCM system presented in [14]. Note that
the bound is applicable to any coding scheme with a
known transfer function such as turbo codes and product
codes. Fig. 1 shows the simulation and analytical results for
the convolutionally coded STBC with two transmit
antennas, N ¼ 2. We can see in the figure that the
proposed bounds are tight to simulation results for a wide
range of SNR values. In Fig. 2, the same information is
shown for eight PSK TCM coded STBCs with four
transmit antennas, N ¼ 4. Obviously, since the
constellation used is complex, the resulting STBC has a
rate of 3/4. Again, the bound is tight to simulation results.
Commun., 2008, Vol. 2, No. 4, pp. 538–544
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4 Generalised selection
combining
The conditional PEP for GSC is given by (5) with the
variables fglg being replaced with the variables fblg,

where bl ¼
PM

i¼1 a
2
l ,(i). Using the integral expression

erfc(x) ¼ 2=p
Ð p=2
0 e(�x2= sin2 u) du [15], the PEP is written as

P(S ! Ŝ) ¼
1

p

ðp=2
0

YL
l¼1

Fb(dlau) du (23)

where au ¼ 1/sin2u and the product is because of the
independence of the fading variables affecting different
symbols. In (23), Fb(dlau) is the moment generating

Figure 2 Bit error probability of eight PSK TCM combined
with rate-3/4, nt ¼ 4 STBC and MRC with different
numbers of diversity branches

Figure 1 Bit error probability of convolutionally coded
STBCs with nt ¼ 2 and MRC with numbers of diversity
branches
541
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function (MGF) of the random variable b defined as

Fb(d ) ¼ Eb[e
�bd ] (24)

Using the result of [16], the MGF in (24) can be expressed as

Fb(d ) ¼ Mc

M

Mc

� �ð1
0

e�dxfa2 (x)

� [Fa2 (x)]
M�Mc [fa2 (d , x)]

Mc�1 dx (25)

where fa2(x) and Fa2(x) are the pdf and cumulative
distribution function (CDF) of the SNR of each diversity
branch, and fa2(d, x) is the marginal MGF given by

fa2 (d , x) ¼

ð1
x

e�dt fa2 (t) dt (26)

For STBCs employing the simple detection scheme
presented in[6] over Rayleigh fading channels, the pdf and
CDF of fading on each receive diversity branch are given,
respectively, by

fa2 (x) ¼
1

(N � 1)!
xN�1e�x x � 0 (27)

Fa2 (x) ¼ g (N , x) x � 0 (28)

where g (a, y) ¼ 1=G(a)
Ð y
0 e

�t ta�1 dt is the incomplete
gamma function. The marginal MGF is written as

fa2 (d , x) ¼
1

(N � 1)!

1

(1þ d )N

� [1� g (N , x(1þ d ))] (29)

Substituting (27)–(29) into (25), we obtain

Fb(d ) ¼

Mc

M

Mc

� �
G(m)Mc (1þ d )N (Mc�1)

�

ð1
0

exp (� x(1þ d ))xN�1

� [g (N , x)]M�Mc

� [1� g (N , x(1þ d )]Mc�1 dx (30)

Making the change of variable y ¼ x(1þ dau), the PEP
he Institution of Engineering and Technology 2008
becomes

P(S ! Ŝ) ¼
1

p

ðp=2
0

YL
l¼1

�

Mc

M

Mc

� �
(N � 1)!Mc (1þ dl )

N (Mc�1)(1þ dlau)
N

8>><
>>:

�

ð1
0

e�yyN�1g(y) dy

9>>=
>>;du (31)

where g(y) is given by

g(y) ¼ g N ,
y

1þ d

� �� �M�Mc

� 1� g N ,
y(1þ dl )

(1þ dlau)

� �� �Mc�1

(32)

Define h ¼ {l : sl = ŝl }, then Lh ¼ jhj represents the
minimum time diversity of the code. Using the transfer
function of the code, the union bound on the bit error
probability is finally given by

Pb �
1

kp

ðp=2
0

@T (D(u), I )

@I

�����
I¼1,D¼e�Es=4N0

( )
du (33)

where T (D(u), I ) is the transfer function of the code
evaluated at D(u) that is given by

Figure 3 Bit error probability of convolutionally coded
STBCs with nt ¼ 2 and GSC with M ¼ 4 (solid: bound,
dashed: simulation)
IET Commun., 2008, Vol. 2, No. 4, pp. 538–544
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D(u)jD¼e�Es=4N0 ¼

Mc

M

Mc

� �
(N � 1)!Mc (1þ dl )

N (Mc�1)(1þ dlau)
N

�

ð1
0

e�yyN�1g(y) dy (34)

where g(y) is defined in (32). The expression in (34) can be
evaluated using the GLI rule, which states the following

ð1
0

e�yyN�1g(y) dy ’
XP
p¼1

wN ( p)g(yN ( p)) (35)

Figure 5 Bit error probability of eight PSK TCM combined
with rate-3/4, nt ¼ 4 STBC and GSC with M ¼ 4 (solid:
bound, dashed: simulation)

Figure 4 Bit error probability of eight PSK TCM coded STBCs
with nt ¼ 2 and GSC with M ¼ 4 (solid: bound, dashed:
simulation)
Commun., 2008, Vol. 2, No. 4, pp. 538–544
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where wN (p) and yN (p) are the pth weight and abscissa,
respectively, computed according to the GLI rule as in [11].

The proposed bound was evaluated for a rate-1/2 (5,7)
convolutional code and an eight-state eight PSK TCM
system presented in [14]. Nevertheless, the bound is
applicable to any coding scheme with a known transfer
function such as turbo codes and product codes. Figs. 3–5,
show the simulation and analytical results for
convolutionally and eight PSK TCM coded STBC
systems, respectively, with different numbers of transmit
antennas N and with different selected diversity branches
out of M ¼ 4. We observe that the bound is tight to
simulation results for a wide range of SNR and diversity

Figure 7 Bit error probability of eight PSK TCM coded STBCs
with nt ¼ 4 and SC with different numbers of diversity
branches (solid: bound, dashed: simulation)

Figure 6 Bit error probability of convolutionally coded
STBCs with nt ¼ 2 and SC with different numbers of
diversity branches (solid: bound, dashed: simulation)
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orders. In addition, we note that the bound is simple to
evaluate using the GLI rule. Figs. 6 and 7 show the
performance of convolutionally and eight PSK TCM coded
STBC with SC, respectively. From the figures, we observe
that the bound is tight to simulation results for a wide
range of diversity orders.

5 Conclusion
Union bounds on the bit error probability of coded STBC
systems with receiver combining using MRC and GSC
over Rayleigh fading channel were derived. Results show
that the bounds are tight to simulation results for a wide
range of diversity orders. Furthermore, the proposed
bounds are easily evaluated using the transfer function of
the code.
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