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ABSTRACT 

This paper considers the performance analysis of binary 
coded systems over Rician block fading channels. In the 
transmitter, the coded bits are interleaved prior to trans- 
mission to spread burst errors resulting from deeply faded 
blocks. The union bound on the bit ermrprobability (BEP) 
-is derived assuming uniform interleaving prior to transmis- 
sion over the channel and using the weight enumerator of 
the code. To compute the union bound, the pairwise ermr 
probabiliry (PEP)  is aerived for  coherent detection with 
perfect and imperfect channel side information ( S I )  at the 
receivet: The bound is evaluated for convolutional codes 
with different values of specular power and results show 
'that the bound predicts the perfomance degradation due 
to channel memory. Channel estimatioddiversity tradeoff 
is-investigated assuming imperfect SI. 

I. INTRODUCTION 

Radio communications. suffer mainly from multipath 
fading. The fading distribution varies according to the en- 
vironment. Rician fading distribution [I] arises if a line-of- 
site exists between the transmitter and receiver in addition 
to the multipath reception. In Rician channels the received 
signal is composed of two .signal-dependent components; 
namely the specular and diffuse components. The specular 
component is due to the line-of-site reception and the 
diffuse component results from multipath reception. As the 
.ratio of specular-to-diffuse component energy increases, 
the channel approaches the Gaussian- channel, i.e., no 
fading. 

Error correcting codes and diversity techniques are stan- 
dard approaches to mitigating the fading. We define the 
channel diversity as the number of independent fading 
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realizations available for a codeword. The performance' 
of coded systems over infinitely interleaved fading chan- 
nels is commonly analyzed using the union bound as 
in [2], [3]. The performance of diversity reception over 
Rician channels with noncoherent detection was derived 
by Jacobs [4]. In delay-sensitive applications infinite in- 
terleaving becomes an impractical assumption. Therefore, 
channel models that exhibit memory are needed to model 
wireless systems. The block fading channel [51 provides 
an acceptable model for many wireless communication 
systems including frequency-hopped spread-spectrum (FH- 
S S )  [6] ,  time-division multiplexing (TDM) and orthogonal- 
frequency division multiplexed (OFDM) systems. In this 
model, a frame undergoes a number of independent fad- 
ing realizations, each affecting a number of consecutive 
signals. Recently in [7], a union bound was derived for 
binary coded systems over Rayleigh block fading channels 
with different receivers. 

In this paper we consider the performance analysis 
of binary codes over Rician block fading channels. If a 
coherent receiver is used, the phase of the fading pro- 
cess is needed for demodulation. In general, channel side 
information (SI) is defined as the phase and amplitude 
of the fading process. If the receiver knows the channel 
SI perfectly, large channel diversity improves the system 
performance resulting in an optimal channel memory of 
unity. On the other hand, if the receiver must estimate the 
channel, long channel memory provides more observations 
for each fading realization which permits a better channel 
estimation. Therefore, longer channel memory improves 
the performance if the frame size is infinite. However, if 
the frame size is finite, there exists a fundamental tradeoff 
between the channel diversity and channel estimation [81. 
As the channel memory length increases, the channel 
diversity is reduced but the channel estimation becomes 
easier since more observations of each fading realization is 
available. On the converse, short channel memory increases 
the number of independent fading realizations available to 
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the decoder, and hence it is able to average out the channel 
behavior at the cost of less accurate channel estimation. 

In this paper, the union bound .for binary coded systems 
over Rician block fading channels is derived. Expressions 
for PEP are derived for coherent detection with perfect and 
imperfect channel SI at the receiver. Moreover, the effect of 
channel estimation and channel diversity is investigated for 
different Rician channels. The paper starts with describing 
the system model in Section 11. The union bound is 
reviewed in Section III and the PEP is derived in Section 
IV. Conclusions are presented in Section V. 

11. SYSTEM MODEL 

The block diagram of the system is shown in Figure 1. In 
each transmission interval of length kT, the encoder maps 
k information bits into n coded bits, resulting in a code rate 
of R, = $. Each coded bit is modulated to a signal from a 
binary unit-energy constellation. The frame of signals S of 
length N is transmitted over a block fading channel with 
F fading blocks, where a block of length m = signals 
undergoes the same fading realization. Due to deeply 
faded blocks bursts of low instantaneous signal-to-noise 
ratio (SNR) occur at the demodulator output. Therefore 
the coded bits are interleaved to spread the bursts in the 
decoder. The demodulator output at time 1 in the f t h  fading 
block is 

(1) 

where E, is the average received energy and zf,l is an 
additive noise modeled as independent zero-mean com- 
plex Gaussian random variables with variance NO. i.e., 
CN(0, No). The variable hf is the channel gain in block 
f and is modeled as complex Gaussian with C N ( b ,  l), 
where b represents the specular component of the channel. 
Hence, it can be written as hf = ufexp(jOf) ,  where 
j = m, the phase Of is uniformly distributed on [0, ZT] 
and the amplitude a f  has a Rician distribution. The density 
function for a normalized Rician random variable is 

f , (a)=Za(l+K)exp[-K-a*(l+K)]  

Yf,r = d % h f s f , i  + Zf , i ,  

where K = bZ is the energy of the specular component and 
IO(.) is the zero-order modified Bessel function of the first 
kind. In this context, K denotes the ratio of the specular 
component energy to the diffuse component energy. 

The receiver employs maximum likelihood (ML) decod- 
ing for the coherent detection case. In this paper, a coherent 
receiver is assumed to have either perfect or imperfect 

g=3 Encoder 1nler1eaver 
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Fig. I The SvUcNre of the binary coded system 

channel SI. If perfect SI is available the decoder chooses 
the codeword S that maximizes the metric 

F m  

m(Y, S) = C Re{yj,lhpf,iI,  (3) 
f=1 k 1  

where Re{.} represents the real part of a complex number. 
The union bound for block fading channels is presented in 
the following. 

111. THE UNION BOUND 

In this section, a union bound on the bit error probahil- 
ity of convolutional codes over block fading channels is 
derived. Throughout the paper, the subscripts c, U and b 
are used to denote conditional, unconditional and bit error 
probabilities, respectively. For linear convolutional codes 
with k input bits, the bit error probability is upper bounded 
P I  as 

(4) 

where de,  is the minimum distance of the code, Pu(d) is 
the unconditional pairwise error probability defined as the 
probability of decoding a received sequence as a weight-d 
codeword given that the all-zero codeword is transmitted. 
In (4), wd is the number of codewords with output weight 
d, which is obtained from the weight enumerator of the 
code [2] .  

In block fading channels the painvise error probability 
P,(d) is a function of the distribution of the d nonzero bits 
over the F fading blocks. This distribution is quantified 
assuming uniform channel interleaving of the coded bits 
over the fading blocks. Denote the number of fading blocks 
with weight w by fu  and define w = min(m,d), then the 
fading blocks are distributed according to the pattem f = 
{fo}y=o if the following conditions are satisfied 

V=O V=l 
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Denote by L = F ~ fo  the number of fading blocks with 
nonzero weights. Then P,(d) averaged over all possible 
fading block patterns is given by 

where 

The probability of a fading block pattern p(f) is computed 
using combinatorics as 

The left factor of p(f) in (8) is the probability of dis- 
tributing d nonzero bits over F blocks with f. blocks 
having v bits, for possible values of v. The right term 
of p(f) is the probability of having such combinations 
f = { f v } ~ ~ o  among the F fading blocks. The union hound 
on the bit error probability of convolutional codes over 
block fading channels is found by substituting (6) in (4) 
and using (6)-(8). The number of summations involved in 
computing P,(d) in (6) increases as the channel memory 
length increases. A good approximation to the union bound 
is obtained by truncating it for a small value of d < N. This 
results in an approximation to the error probability rather 
than an upper bound. Expressions for P,(dlf) for coherent 
detection with different SI assumptions are derived in the 
next section. 

IV. PAIRWISE ERROR PROBABILITY 

In this section, we derive the PEP of binary codes over 
Rician block fading channels for coherent receivers. The 
PEP is defined as the probability of decoding a received 
sequence erroneously as a codeword S given that the all- 
zero codeword S was transmitted. The PEP conditioned on 
the fading amplitudes and for a fading block pattern f is 
given by 

P,(dlf) = Pr (m(Y, S) - m(Y, S) < O I H ,  S) , (9) 

where S is a codeword with weight d and H = {hf}y=l. 
The cases of perfect and imperfect SI are considered in the 
following. 

A. Perfect SI 
Recall that the received signal over a block fading 

channel is given by ( I )  and the corresponding ML decoding 
rule is given by (3). Substituting the metric (3) in (9). 
the conditional painvise error probability for coherent 
detection with perfect SI is given by 

/ L  m \ 

The distribution of Re{yf,l} conditioned on hf is complex 
Gaussian with mean G h 1 s f . l  and variance NO. The 
conditional pairwise error probability simplifies to 

where = 3 is the S N R  per information bit. Note 
that the average energy per bit is given by Eb = R&, 
where R, is the encoder rate. To find P,(dlf), (11) is 
averaged over the fading amplitudes A = {af);=l. An 
exact expression of the painvise error probability can be 
found by using the integral expression of the Q-function. 

Q ( x )  = f o 1' e ( - 5 / 2 . i n ~  0)dQ [9] 

The union bound was evaluated for a rate-; convolutional 
code with generators (23,35) and a frame size of N = 
2 x 512 coded bits. Note that the convolutional code has 4 
memory elements. As discussed in Section In, the union 
bound is truncated to reduce computation complexity. For 
the results in this paper the union bound was truncated 
after codewords with distances d > 12. According to [7] ,  
the bound was shown to be tight to the simulation results 
for Rayleigh fading channels. Hence, only analytical results 
are shown in this paper. 

Figure 2 shows the SNR required to achieve bit error 
rate of Pb = plotted versus the specular-to-diffuse 
ratio K of the Rician channel. We observe that the SNR 
degradation due to longer channel memory increases as 
the specular-to-diffuse ratio decreases. Thus increasing 
the energy of the channel line-of-site component reduces 
the effect of the diversity provided by the independent 
fading blocks. This is expected since increasing K causes 
the energy of the specular component to increase and 
the channel approaches the "no fading" scenario, where 
diversity becomes less important. 
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Fig. 2. SNR required for a (23,35) convolutional code to achieve 
Pb = IO-' versus the specular-to-diffuse ratio K (linear scale) for 
memory lengths m = 8, 16,32,64. 

8 0.571 
16 0.533 
32 0.516 
64 0.508 

B. Imperfect SI 

For coherent detection with imperfect SI it is necessary 
to estimate the channel SI. This is achieved by transmitting 
a pilot signal with energy Ep in each fading block. The 
corresponding received signal is given by 

Yf,P = a h f  i- Zf,P. (13) 

The ML estimator for hf is given by kf = 2 % ~  - hf+ef ,  

where e l  = IS the estimation error. The distribution 

of ef is CN(0,u:) where U: = 3. The correlation 
coefficient between the true channel gah and its estimate 
is given by 

6- *' 

7 5 
15 6 
31 6 
63 6 

TABLE I 
RATES, MINIMUM DISTANCES A N 0  P U N C T U R I N G  PATTERNS OF THE 

PUNCTURED RATE-; CODES. 

I m 1 Code Rate R, I Puncturing Location I d,,, 1 
I 4 1  0.667 I 3 1 4 1  

The conditional painvise error probability for the subopti- 
mal decoder is given by 

The received signal y f , ~  conditioned on k, is a complex 
Gaussian random variable with mean a s f , l E [ h l & ]  and 
variance No + (1 -&E,, where E[hIk] = F(hf - b )  + 
b. Thus the conditional painvise error probability for the 
suboptimal decoder is given by 

where df is the number of nonzero error bits in fading 
block f. Define the normalized complex Gaussian random 
variable (f = + j with distribution CN(%, 1). Then, 
the conditional pairwise error probability becomes 

1 (18) 

(14) 
1 

In order implement a ML decoding rule, the likelihood 
function of the channel observations (received and pilot 
signals) conditioned on the transmitted codeword should 
be In the ML was shown 
be difficult to implement in a Viterbi receiver, Therefore, a 
suboptimal decoding metric that maximizes the likelihood 
function p(Y(H, S )  is used. It is given by 

where [f is as defined above. Therefore, the painvise error 
Probability for the case of imperfect SI is the s:me as that 
Of perfect by replacing 7 b  by '% = , e j  and 

K by 5. 
For systems employing pilot-aided channel estimation, 

the energy of the pilot signal is taken into account in 
m(Y, S )  = ~ R e { @ , & f S f , i ) .  (15) the SNR axis. Funhermore, one coded bit is punctured 

to maintain the same transmission rate for systems with 

F r n  

f=11=1 

317 



7 b  (dB) 

Fig. 3.  Approximation of the bit e m r  probability of 'a  (23,35) 
convolutional code over a Rician fading channel with K = 1 , l O  dB, 
imperfect SI (OPE receiver) and a frame size N = 1024 for memory 
lengths m = 8, 16,32,64. 

îl (dB) 

Fig. 4. Approximation of the hit error probabaity of a (23.35) 
convolutional code over a Rician fading channel with K = 1 , l O  
dB. imperfect SI (CDE assumption) with E, = E, and a frame size 
N = 1024 for memory lengths~rn = 8,16,32,~64. 

different channel memory. The resultant code. rate after 
puncturing one bit every fading block is given by 

- mR, R, = - 
m-1'  

In Table -I we show the code rates and the 'minimurn 
distances of the punctured codes for different channel 
memory lengths. Also, the location of the punctured coded 
bit in a m-length fading block. According to the table, 
the code rate increases with reducing the channel memory 
length, which decreases the error correcting capabilities of 

the code. Thus systems with short channel memory are 
expected to have more channel diversity at the cost of lower 
minimum distance and worse channel estimation quality. 
On the other hand, longer channel memory results in more 
a powerful code as well as better channel estimation at the 
cost of less channel diversity. 

Two scenarios can he considered for channel estimation 
using pilots with Ep = E,. The first one results from only 
pilot estimation (OPE) with an estimation error variance of 
uf = e. The second case considers a lower bound on the 
performance of receivers employing iterative joint decod- 
ing and channel estimation. In such receivers the decoding 
results are used to improve the channel estimates, which 
are used to improve the decoding results. This process 
is repeated iteratively. In general, the more reliable the 
decoding results, the more accurate is channel estimation. 
A lower bound on the performance of iterative receivers is 
obtained if the signals in each fading block are known with 
probability one. In this case they can be considered as pilots 
resulting in an estimation error variance of uf = &. This 
case is referred to as correct data estimation (CDE). 

From Figure 2, the optimal channel memory value for 
an OPE receiver with Ep = E,  is m = 32 for a Rayleigh 
fading channel, i.e. K = 0, whereas it is m = 64 for a 
Rician channel with K = 10. Also, note that the case of 
m = 8 outperforms the case of m = 64 when the channel 
is more fading, where the reverse occurs for channels that 
are less faded, i.e., larger values of K .  Figures 3 and 4 
show the results of imperfect SI with an OPE receiver and 
the CDE assumptions, respectively. The gain loss in S N R  
due to the channel memory is less compared to the case of 
perfect SI. Also, we observe that systems with long channel 
memory perform better as the energy of the specular 
component of the channel increases. This is because as K 
increases the channel becomes less fading which reduces 
the need for the decoder to average over the statistics of 
the channel. Therefore, the channel diversity becomes less 
crucial causing in systems with long channel memory to 
outperform system with short memory. Another reason for 
this is the larger energy fraction spent on pilot signals in 
systems with short channel.memory lengths than in systems 
with long memory. This is obvious for the case of K = 10 
dB, where the performance of m = 64 is.nearly optimal 
for most of the SNR values. On the other hand, the case of 
m = 8 is the worst every where when K = 10 dB, where 
it outperforms the case of m = 64 when K = 1 dB. 

Figure 5 shows a comparison of systems with channel 
memory lengths m = 8 and m = 32. The SNR degradation 
due to channel estimation reduces as the channel memory 
increases. Moreover, the SNR loss in OPE receivers with 
long channel memory increases with increased energy of 
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7 b  (dB) 

Fig. 5.  Approximation of the bit e m r  probability of a rate-; (23.35) 
convolutional code over a Rician fading channel with K = 1 , l O  dB.. 
frame size N = 1024 and memory lengths rn = 8,32 using perfect 
and imperfect SI with Ep = E, (solid m = 8, dash: rn = 32). 

. . . . . . . . . . .. . . .  . . . . . .  . . .  

. . . . .  . . . .  

-4 -2 0 2 4 6 8 10 12 14 I b  

E J E ,  (dB) 

Fig. 6. S N R  required for a rate-$ (23,35) convolutional code to achieve 
Pa = versus E,fE. for the OPE receiver with memory lengths 
rn = 16.32. 

the specular component of the channel. When the channel 
is estimated using a pilot signal, the channel estimation 
error adds a fading component to the channel gain at the 
decoder. The effect of this new fading component increases 
as the energy of the specular component increases of the 
channel, which degrades the performance of OPE receivers 
more as K increases. 

The energy allocated for the pilot signal is optimized as 
shown in Figure 6. We observe that the optimal pilot energy 
allocation is almost independent of the fading nature of 
the channel, i.e., independent of the energy of the specular 

component K of the channel. This is because the amount 
of energy available in each fading block, which can be used 
in estimating the channel, is the controlling factor of the 
optimal pilot energy allocation. Clearly, this energy amount 
is a function of the channel memory length only. Also, the 
SNR gain resulting from optimizing the pilot energy is 
almost independent of the channel fading behaviour. 

. .  

V. CONCLUSIONS 
In this paper, the union bound for binary coded systems 

over Rician block fading channels was derived. Coherent 
detection was considered with perfect and imperfect SI 
at the receiver, and the corresponding PEP were derived. 
The bound was evaluated for convolutional codes and 
results show that the bound predicts the trend of the code 
performance with channel memory. Also; it was observed 
that the effect of channel memory reduces with increasing 
the power of the channel specular component. The tradeoff 
between channel estimation and effective diversity was 
investigated, where it was shown that the optimal channel 
memory increases as the channel becomes less fading. 
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