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Abstract— This paper considers the performance analysis of
binary coded systems over block fading (BF) channels. In the
transmitter, the coded bits are interleaved prior to transmission
to spread burst errors resulting from deeply faded blocks. The
union bound on the bit error probability (BEP) is derived assum-
ing uniform interleaving and using the weight enumerator of the
code. The union bound is a function of the pairwise error proba-
bility (PEP). Hence, the PEP is derived for coherent detection with
different assumptions on the availability of the channel side infor-
mation (SI) at the receiver. The proposed bound is evaluated for
convolutional and turbo codes. For the case of imperfect SI, the
tradeoff between channel estimation and the code’s diversity is in-
vestigated. Results show that the bound provides insight on the
gain loss due to channel memory.

I. INTRODUCTION

Radio communications suffer mainly from fading of the re-
ceived signal, and diversity is powerful to mitigate this problem.
Error control codes provide a form of time diversity. If perfect
SI is assumed, ideal interleaving provides the best performance,
which is not possible for slow fading channels and limited de-
lay applications. In practice, each frame is transmitted over a
number of independent fading channels, as in frequency hop-
ping and orthogonal frequency division multiplexing (OFDM)
systems. In this case, a block of bits undergo the same channel,
resulting in a BF channel [1, 2]. If iterative channel estima-
tion and decoding is performed, there exists a tradeoff between
channel estimation and the code’s effective diversity [3].

The performance of coded systems over ideally interleaved
channels is commonly analyzed using the union bound, which
was computed in [4] for specific convolutional codes using the
weight enumerator of the code. Similar bounds were derived in
[5] for trellis codes, and in [6] for turbo codes with perfect and
no SI assumptions. Multifrequency trellis codes [7] are special
codes for BF channels, in which the output signals from the en-
coder are transmitted over different fading blocks. In [8], upper
bounds on the performance of the multifrequency convolutional
codes were derived. Several block and trellis codes for the BF
channels were presented in [9].

In this paper, the union bound of binary coded systems over
BF channels is derived. Expressions for PEP are derived for dif-
ferent assumptions about the channel SI at the receiver. More-
over, the tradeoff between channel estimation and the code’s di-
versity is investigated. The paper starts with the system model
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in Section II. The proposed bound is derived in Section III and
the PEP is considered in Section IV. Results are discussed in
Section V and conclusions are presented in Section VI.

II. SYSTEM MODEL

The block diagram of the system is shown in Figure 1. In
each transmission interval, the encoder maps k information bits
into n coded bits, resulting in a code rate of Rc = k

n . Each
coded bit is modulated to a signal from a binary unit-energy
constellation. The frame of signals {sl}Nl=1 is transmitted over
a BF channel, where a block of length m = �NF � signals un-
dergoes the same fading realization. Here, F is the number
of fading blocks. This occurs if the channel’s coherence time
is longer than the transmission duration of each block. Due to
deeply faded blocks, bursts of low instantaneous signal-to-noise
ratio (SNR) occur at the demodulator output, and therefore the
coded bits are interleaved to spread the bursts in the decoder.
The received signal at time l in the f th fading block is

yf,l =
√
Esαfsf,l + ηf,l, (1)

where Es is the average received energy and ηf,l is an addi-
tive white noise modeled as independent zero-mean complex
Gaussian random variables with variance σ2

η, CN (0, σ2
η). The

variable αf is the channel gain in the block f and is modeled
as CN (0, 1). Hence, it can be written as αf = af exp(jθf ),
where j =

√−1, the amplitude af has a Rayleigh distribution
and the phase θf is uniformly distributed on [0, 2π].

The receiver employs maximum likelihood (ML) decoding.
In this paper, coherent reception is considered, where the chan-
nel phase is assumed to be known. Thus, SI refers solely to the
fading amplitudes {af}Ff=1. Therefore, the receiver may have
either perfect, imperfect or no SI. The decoder maximizes

m(y, s) = −
F∑
f=1

m∑
l=1

∣∣∣yf,l −√Esafsf,l∣∣∣2, (2)

if perfect SI is available, and maximizes

m(y, s) = −
F∑
f=1

m∑
l=1

∣∣∣yf,l −√Essf,l∣∣∣2, (3)

for no SI as in [5,10]. If a pilot signal is transmitted with energy
Ep in each block, the received signal is

yf,p =
√
Epαf + ηf,p (4)
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Fig. 1. The structure of the binary coded system.

The ML estimator for αf is α̂f = αf + ef , where ef = ηf,p√
Ep

is the estimation error, which is modeled as CN (0, σ2
e) with

σ2
e = σ2

η/Ep. The estimation quality is measured by

µ =
E[αf α̂∗

f ]√
Var(αf )Var(α̂f )

=
1√

1 + σ2
e

. (5)

The received signal yf,l conditioned on α̂f is complex Gaussian
with mean µ

σ

√
Esα̂fsf,l and variance σ2

η + (1 − µ2)Es. Thus,
the ML decoding metric for imperfect SI is

m(y, s) = −
F∑
f=1

m∑
l=1

∣∣∣yf,l − µ

σ

√
Esα̂fsf,l

∣∣∣2. (6)

The proposed union bound is derived in the following.

III. THE UNION BOUND

In this section, the union bound for convolutional and turbo
codes over BF channels is derived. For linear convolutional
codes with k input bits, the BEP is upper bounded [11] as

Pb ≤ 1
k

N∑
d=dfree

wdPu(d), (7)

where dfree is the free distance of the code, Pu(d) is the uncon-
ditional PEP, which is defined as the probability of decoding in
favor of a codeword with weight d when the all-zero codeword
is transmitted. In (7), wd =

∑N
i=1 iAi,d where Ai,d is the num-

ber of codewords with output weight d and input weight i. The
weight distribution {wd}Nd=dfree

is obtained directly from the
weight enumerator of the code [11]. For turbo codes with inter-
leaver size Ñ = RcN , the union bound is found by averaging
the BEP over all possible interleavers [12]

Pb ≤
Ñ∑
i=1

i

Ñ

(
Ñ

i

) Ñ∑
d=dfree

p(i, d)Pu(d), (8)

where p(i, d) is the probability of having an input sequence with
weight i and an output codeword with weight d. For a turbo
code with two component codes, p(i, d) is given by

p(i, d) =
∑

d0,d1,d2:d0+d1+d2=d

p0(i, d0)p1(i, d1)p2(i, d2), (9)

Where p0(i, d0) = δ(i, d0) represents the systematic bit; and

pj(i, dj) = Ai,dj/
(
Ñ
i

)
for j = 1, 2, accounts for the interleaver.

For BF channels, Pu(d) is a function of the distribution of the
d nonzero bits among the F fading blocks, which is quantified
assuming uniform interleaving. Denote the number of fading
blocks with weight v by fv andw = min(m, d), then the pattern
f = {fv}wv=0 occurs if

F =
w∑
v=0

fv, d =
w∑
v=1

vfv. (10)

By averaging over possible patterns, Pu(d) is found as

Ef |d [Pu(d)] =
F∑

f1=1

F/2∑
f2=1

...

F/w∑
fw=1

Pu(d|f)p(f). (11)

Here, p(f) = n(f)∑
f n(f) , where n(f) is the number of occurrence

of the pattern f , which depends on the number of combinations
of {fv}wv=0 among the F blocks, and the number of ways the
bits can be ordered in the pattern. Using combinatorics,

n(f) =
F !

f0!f1!...fw!
.

d!
(2!)f2(3!)f3 ...(w!)fw

. (12)

Computing (11) requires w summations for each value of d,
which is difficult for m > 5. However, Pu(d|f)p(f) becomes
small when fv > 2, for v ≥ 3. Also, the slope of the bound is
determined mainly by the terms containing fv = 0, 1 for v ≥ 3.
Hence, (11) can be approximated as

Ef |d [Pu(d)] ≈
F∑

f1=1

F/2∑
f2=1

1∑
f3=0

...

1∑
fw=0

Pu(d|f)p(f), (13)

Thus, the union bounds for convolutional and turbo codes over
BF channel are found by substituting Ef |d[Pu(d)] from (13) for
Pu(d) in (7) and (8), respectively. Expressions for Pu(d|f) for
different SI assumptions are derived in the next section.

IV. PAIRWISE ERROR PROBABILITY (PEP)

The conditional PEP, Pc(d|f) is given by

Pc(d|f) = Pr
(
m(y, s0) − m(y, s) < 0

∣∣∣{αf}Ff=1, s
0
)
,

(14)
where s is a codeword with weight d. The cases of perfect,
imperfect and no SI are considered in the following.

A. Perfect SI

For the case of perfect SI, the conditional PEP is

Pc(d|f) = Q



√√√√ρRcγb w∑

v=1

v

fv∑
i=1

a2i


 , (15)

where γb = Eb

σ2
η

is the SNR per information bit, ρ = 2 for

antipodal signals and ρ = 1 for orthogonal signals. To find
Pu(d|f), (15) is averaged over the fading amplitudes as

Pu(d|f) = Ea


Q



√√√√ρRcγb w∑

v=1

v

fv∑
i=1

a2i




 . (16)
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Using Q(x) ≤ 1
2e

−x2/2, the Chernoff bound on (16) is

Pu(d|f) ≤ 1
2

w∏
v=1

(
1

1 + vρRcγb/2

)fv

, (17)

where the product results from the independence of the channels
in different fading blocks. An exact expression of the PEP is
found by using the integral expression of the Q-function [13]

Pu(d|f) =
1
π
Ea

[∫ π
2

0

exp

(
ρRcγb

2 sin2 θ

w∑
v=1

v

fv∑
i=1

a2i

)
dθ

]

=
1
π

∫ π
2

0

w∏
v=1

(
1

1 + vρRcγb/2 sin2 θ

)fv

dθ. (18)

B. Imperfect SI

The PEP for the case of imperfect SI is found by plugging
(6) in (14). After some algebra, the PEP conditioned on the
estimated amplitudes {âf}Ff=1 is given by

Pc(d|f) = Pr
(
η >

µ2

σ2
ρEs

w∑
v=1

v

fv∑
i=1

â2i

∣∣∣{â}), (19)

where η is complex Gaussian with zero mean and variance of
ρ
(
σ2
η + (1 − µ2)Es

)
µ2

σ2Es
∑w

v=1 v
∑fv

i=1 â
2
i . Let ζ = â

σ , and

define γ̂b = µ2γb

1+(1−µ2)Rcγb
to be the effective SNR that takes

into account the additional noise in the channel estimation, then
the conditional PEP simplifies to

Pc(d|f) = Q



√√√√ρRcγ̂b w∑

v=1

v

fv∑
i=1

ζ2i


 . (20)

Since (20) is similar to (15), then the PEP of imperfect SI is the
same as that of perfect SI, with replacing γb by γ̂b. Two cases
are considered for channel estimation using pilots with Ep =
Es. In the first case, only pilot estimation (OPE) is performed,
resulting in σ2

e = σ2
η/Es. The second case considers iterative

channel estimation and decoding [3]. In this case, a lower bound
on σ2

e is obtained by assuming the signals in each block are
known, i.e., σ2

e = σ2
η/(mEs). This case is referred to as correct

data estimation (CDE).

C. No SI

When no SI is available at the receiver, (14) is upper bounded
using the Chernoff bound [5] as

Pc(d|f) ≤
F∏
f=1

E
[
exp

(
λ

m∑
l=1

|yf,l − s0f,l|2 − |yf,l − sf,l|2
)]
,

(21)
where λ > 0 is the Chernoff parameter. Expanding,

Pc(d|f) ≤
F∏
f=1

exp
(
− λ

m∑
l=1

|s0f,l − sf,l|2 − 2λ(af − 1)

×Re{s0f,l(s0f,l − sf,l)∗}
)

×E
[
exp

(
−2λ

m∑
l=1

Re{ηf,l(s0f,l−sf,l)∗}
)]
. (22)

For constant-envelope constellations, 2Re{s0f,l(s0f,l−sf,l)∗} =
|s0f,l − sf,l|2. As in [11], it can be shown that

E
[
e(−2λ

∑m
l=1 Re{ηl(s

0
l −sl)

∗})
]

= e(λ
2σ2

η

∑m
l=1 |s0l −sl|2). (23)

Substituting back in (22), the conditional PEP simplifies to

Pc(d|f) ≤
F∏
f=1

exp
(
− λaf

m∑
l=1

|s0f,l − sf,l|2

+λ2σ2
η

m∑
l=1

|s0f,l − sf,l|2
)
. (24)

Since
∑m

l=1 |s0f,l − sf,l|2 = 2ρEsdf , where df is the number
of nonzero locations in block f , (24) simplifies to

Pc(d|f) ≤
F∏
f=1

exp
(−2ρEsλafdf + 2ρEsλ2σ2

ηdf
)
. (25)

Substituting λ̃ = λσ2
η and γb = Es

Rcσ2
η

, then

Pc(d|f) ≤
F∏
f=1

exp
(
−2λ̃dfafρRcγb + 2λ̃2dfρRcγb

)
. (26)

By averaging over the fading gains {af}Ff=1,

Pu(d|f) ≤
F∏
f=1

exp
(
2λ̃2dfρRcγb

)
E
[
exp

(
−2λ̃dfafρRcγb

)]

=
F∏
f=1

exp
(
2λ̃2ρRcγb

) [
1 − 2

√
πβf exp(β2

f )Q(
√

2βf )
]
,

(27)
where βf = λ̃dfρRcγb. To find λ̃ that minimizes the bound,

the approximation Q(x) ≈ 1
2
√
π

exp(−x2

2 )(1 − 1
x2 ) is used,

and (27) becomes

Pu(d|f) ≤
w∏
v=1

(
1

2β2
v

)fv

exp
(
2λ̃2fvρRcγb

)
, (28)

where in this case βv = λ̃vρRcγb. Let L = F − f0 denote
the number of fading blocks with nonzero weights, and d̄ =∑w

v=1 vfv represent the average weight in a fading block. Then,
the PEP simplifies to

Pu(d|f) ≤
exp

(
2λ̃2d̄ρRcγb

)
2L(λ̃ρRcγb)2L

∏w
v=1 v

2fv

. (29)
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This can be minimized over λ̃, resulting in an optimum value
λ2
opt = L/(2d̄ρRcγb). Substituting for λopt, the final expres-

sion of the PEP for no SI is given by

Pu(d|f) ≤
(

ed̄

LρRcγb

)L( w∏
v=1

v2fv

)−1

. (30)

V. RESULTS

The proposed union bound was evaluated for the (5,7) con-
volutional code with a frame size N = 200, and the (1,5/7,5/7)
turbo code with a frame size N = 300, both with BPSK sig-
naling. In computing the union bound, (18) is used for perfect
and imperfect SI with the appropriate SNR, where (30) is used
for the case of no SI. Figure 2 shows the results for the convo-
lutional code with perfect SI information. The bound is tight to
the simulation up to m = 10, where it is less tight for m = 20.
This is due to the approximation used in (13), whose effect in-
creases as the memory length increases since more combina-
tions of f are excluded by the approximation. In Figure 3, the
case of no SI is shown. The bound is less tight because the PEP
in (30) is the Chernoff bound, not the exact expression as (18).

Figures 4 and 5 show the results of imperfect SI with POE
and CDE, respectively. The energy of the pilot is taken into ac-
count in the x-axis. For the POE, the gain loss in SNR due to the
channel memory is reduced compared to the case of perfect SI.
This is expected since shorter memory length reduces the num-
ber of transmitted pilot signals, and hence the system becomes
more energy efficient. This phenomenon becomes more clear
in the CDE case because the estimation quality improves with
increasing memory length, since there is more information used
in the estimation. Note that the cases of m = 10 and m = 5
are very close in the low and moderate SNR region, and they
become more distinguished as the SNR increases. This is be-
cause at high SNR, the channel estimation is better since σ2

e is
small. This suggests that the optimal memory length is between
m = 10 andm = 5, but closer tom = 5.

The results of the turbo code are shown in Figures 6, 7 and
8 for the cases of perfect SI, imperfect SI with OPE and CDE,
respectively. The case of no SI is not plotted for the space lack,
but it bears no additional information than Figure 3. Again, the
union bound is tight to simulation. From Figure 7, it can be
seen that the gain losses due to the channel memory is less than
the convolutional codes. Moreover, the cases of m = 10 and
m = 5 cross at 4 dB, which is also dictated by the bound. This
is expected since turbo codes is more connected than convolu-
tional codes due to the interleaving, and hence more sensitive
to channel memory. In the case of CDE, this becomes clearer,
where the case ofm = 10 outperformsm = 5 up to SNR value
of 5 dB. Also, the bounds of these cases cross at 15 dB, indi-
cating that the optimal memory length is somewhere between
m = 10 andm = 5, depending on the SNR value.

VI. CONCLUSIONS

In this paper, the union bound of coherently detected binary
coded systems over BF channels was derived. Several assump-
tions on the availability of SI at the receiver were considered,
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Fig. 2. Performance of the (5,7) convolutional code with perfect SI.

and the corresponding PEP were derived. The proposed bounds
were evaluated for convolutional and turbo codes. Results show
that the proposed bound is tight to the simulation and gives the
trend of the code performance with channel memory, in the case
of iterative decoding and channel estimation. Turbo codes were
shown to be more sensitive to channel memory, and the optimal
memory length was investigated.
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Fig. 3. Performance of the (5,7) convolutional code with no SI.
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Fig. 4. Performance of the (5,7) convolutional code with OPE.
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Fig. 5. Performance of the (5,7) convolutional code with CDE.
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Fig. 6. Performance of the (1,5/7,5/7) turbo code with Ñ = 100 and perfect
SI.
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Fig. 7. Performance of the (1,5/7,5/7) turbo code with Ñ = 100 and OPE.
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Fig. 8. Performance of the (1,5/7,5/7) turbo code with Ñ = 100 and CDE.
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