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Abstract—This work studies the effect of erroneous noise
power estimates on the behavior of noise constrained diffusion-
based adaptive algorithm for distributed adaptive networks.
The noise constrained diffusion least mean square (NCDLMS)
algorithm assumes knowledge of the noise variance is available
at each node for good performance. Here, it is shown that
the NCDLMS algorithm is robust to large variations in noise
variance estimation. Moreover, the mean and steady-state anal-
yses of the NCDLMS algorithm are carried out and simulation
results are found to corroborate the theoretical findings. Great
improvement in performance is obtained through the use of
the proposed algorithm even when no information on the noise
variance is available. The increased computational complexity
of the NCDLMS algorithm is justified through the performance
improvement it offers.

Index Terms – Adaptive filters, Variable step-size least
mean square, noise constrained least mean square, diffusion
algorithm.

I. INTRODUCTION

Distributed adaptive sensor networks have found various
applications in recent years ranging from industrial process
monitoring, environment and habitat monitoring, target local-
ization and battlefield surveillance systems, just to name a few.
In these sensor networks, a collection of nodes collaborate
to estimate a common parameter. The collaboration among
the nodes is limited to neighbors in the immediate vicinity of
each node, either due to physical limitations or computational
considerations.

To address the above mentioned concerns, various adaptive
collaboration strategies have been suggested in the literature
in recent years [1]-[8]. These include incremental approach
[1], diffusion LMS (DLMS) [2], [3], diffusion RLS (DRLS)
[4], distributed least mean squares algorithm [5], DLMS with
adaptive combiners [6] and variable step size diffusion least
mean square (VSSDLMS) approach [7].

Recently, a noise constrained diffusion LMS (NCDLMS)
algorithm was presented in [8] where the estimation process
at each node was aided by the exact knowledge of the
noise variance. Obtaining frequent and accurate noise power
estimate might not be possible in all scenarios and it might
be impossible to obtain under certain ones. This motivates us
to study the behavior performance of the NCDLMS algorithm
when faulty or no information is available of the noise power.

In this work, we investigate the behavior of the NCDLMS
under various degree of mismatches between the actual and
the estimated noise variance at each node. Also, the mean
and steady-state analyses of the NCDLMS algorithm when no
information about the noise variance is available to the nodes
are presented. In the worst-case scenario, it turns out that the
zero noise constrained diffusion LMS (ZNCDLMS) algorithm
performs remarkably well when compared to other algorithms.

II. PROBLEM FORMULATION

Consider an adaptive network consisting of N sensor nodes,
as shown in Fig. 1, deployed over a geographical area to esti-
mate an M dimensional unknown parameter vector wo ∈ RM .
We denote the neighborhood of a node k by Nk and its
cardinality by nk. The neighborhood of a node k is a set
of nodes in close vicinity such that they have a direct link
with node k, i.e., for l = 1, 2, · · · , N and l 6= k, a link exists
between nodes l and k iff l ∈ Nk.
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Fig. 1. Adaptive network of N nodes.

Each node k has access to a time realization of a known re-
gressor row vector uk,i of length M and a scalar measurement
dk(i), related as

dk (i) = uk,iwo + vk (i) , (1)

where k = 1, . . . , N , vk(i) is zero-mean spatially uncorrelated
additive white Gaussian noise with variance σ2

vk
, and i is

the time index. At each node, the scalar measurement and
the regressor vector are used to generate an estimate of the
unknown vector wo. Let Ψk,i denote its estimate. We assume
that each node cooperates only with its neighbors.

At every time instant i, each node k has access to its
own estimate Ψk,i, as well as to estimates Ψl,i, from its
Nk neighbor nodes. Each node diffuses the estimates received



from its neighbors to update its local estimate. Two different
schemes have been introduced in the literature for diffusion
estimation. The adapt-then-combine (ATC) scheme [3],[6] first
updates the local estimate using the adaptive algorithm and
then the estimates from the neighbors are fused together. The
combine-then-adapt (CTA) scheme [2] performs the operations
of the ATC scheme in a reverse order. It has been shown that
the ATC scheme outperforms the CTA scheme [3],[6], and
therefore the ATC scheme has been adopted in this work.

The local cost function at each node takes the form

Jk (w) = E
[
|dk − ukw|2

]
, (2)

where w is the estimate of the unknown vector. Completing
the squares and observing that Ru,k = E [u∗kuk], (2) becomes
[3]

Jk (w) = ‖w− wk‖2Ru,k
+ MMSE, (3)

where “MMSE” stands for the minimum mean square er-
ror, wk is a vector of local estimate at the kth node,
and ‖w− wk‖2Ru,k

= (w− wk)T Ru,k (w− wk) (weighted
Euclidean norm). For a fully connected network we have
nk = N − 1 for all k and the global cost function takes the
form

J (w) =
∑

l∈Nk

E
[
|dl − ulw|2

]
+

N∑

l=1
l 6=k

‖w −wl‖2Ru,l
. (4)

Practically, however, the cardinality of a node k is much less
then N − 1, i.e., nk << N − 1 and the global cost function
can be approximated by the following local cost function:

Jk (w) =
∑

l∈Nk

E
[
|dl − ulw|2

]
+

∑

l∈Nk/{k}
blk ‖w−Ψl‖2.

(5)
where wl is replaced by its intermediate estimate at node l,
denoted by Ψl. Furthermore, the second term of the right hand
side of (5) is no longer weighted by Ru,l, instead it is replaced
by a constant weighting factor blk [3]. Defining

J1
k (w) =

∑

l∈Nk

E
[
|dk − ukw|2

]
, (6)

we get

minw Jk (w) = J1
k (w) +

∑

l∈Nk/{k}
blk ‖w−Ψl‖2. (7)

Finally, solving (7) results in the diffusion LMS (DLMS)
algorithm.

III. ADAPTIVE DIFFUSION ALGORITHMS

In this section we give an overview of the DLMS, the vari-
able step size DLMS (VSSDLMS), and the noise constrained
DLMS (NCDLMS) algorithms. Table I summarises these
algorithms. Some clarifications for some of the parameters
used in these algorithms are explained next.

In the DLMS algorithm [2], Ψk,i is the intermediate local
estimate at node k at time instant i, µk is the step size

Algorithm Mathematical Formulation
Ψk,i = wk,i−1 + µkuT

k,i

(
dk (i)− uk,iwk,i−1

)
DLMS [2] wk,i =

∑
lεNk

clkΨl,i

Ψk,i = wk,i−1 + µk,iu
T
k,i

(
dk (i)− uk,iwk,i−1

)
VSSDLMS [7] wk,i =

∑
lεNk

clkΨl,i

µk,i+1 = αVSSµk,i + γVSSe2
k (i)

µk,i = µ̄k

(
1 + γNCβk,i−1

)
Ψk,i = wk,i−1 + µk,iu

T
k,i

(
dk (i)− uk,iwk,i−1

)
NCDLMS [8] wk,i =

∑
lεNk

clkΨl,i

βk,i = (1− αNC) βk,i−1 + αNC
2

(
e2
k(i− 1)− σ2

v,k

)

TABLE I
SUMMARY OF ALGORITHMS

associated with the kth node and clk represents the com-
biner coefficient. Various choices for combiner coefficients are
possible. In this work, we use the Metropolis combiner rule
defined as follows [2]:

clk =





1
max(Nk,Nl)

, nodes k and l are linked and k 6= l

0, nodes k and l are not linked
1− ∑

l∈Nk/{k}
ckl. k = l

(8)
The error at the kth node is given by

ek (i) = dk (i)− uk,iwk,i−1. (9)

In the VSSDLMS algorithm [7], the step-size in the DLMS
algorithm, µk, is replaced by µk,i, with positive constants
αVSS and γVSS. The error is still given by (9).

In the NCDLMS algorithm [8], the step-size in the DLMS
algorithm, µk is replaced by µk,i, µ̄k is the fixed step-size,
and βk,i−1 is a Langrange multiplier with 0 < αNC < 1.

IV. MEAN ANALYSIS OF NCDLMS

In this section, the mean analysis of the NCDLMS algorithm
is presented. Here, first we introduce new global variables

wi = col {w1,i, ...,wN,i} Ψi = col {Ψ1,i, ...,ΨN,i}
Ui = diag {u1,i, ...,uN,i} D = diag {µ1IM , ..., µNIM}
di = col {d1 (i) , ..., dN (i)} vi = col {v1 (i) , ..., vN (i)}

Hence, from the above newly defined variables, we can form
a complete new set of equations representing the functionality
of the network. Second, the measurements, di, can be set as

di = Uiw(o) + vi (10)

where w(o) = Qwo and Q = col {IM, IM, ..., IM} is a MN×
M matrix. Similarly, the update equations can be remodeled
to represent the entire network instead of just a single node
as follows

ei = di −Uiwi−1 (11)
Ψi = wi−1 + D (IMN + γNCBi)UT

i ei (12)
wi = GΨi (13)

Bi+1 = (1− αNC)Bi +
αNC

2
(Ei − S) (14)



where G = C⊗ IM , C is the N ×N weighting matrix, Bi =
diag {β1IM , ..., βNIM} is the diagonal update matrix for the
Lagrange multipliers, Ei = diag

{
e2
1 (i) IM , ..., e2

N (i) IM

}
is the diagonal matrix for instantaneous error, S =
diag

{
σ̂2

1IM , ..., σ̂2
NIM

}
is the diagonal matrix containing the

estimated noise powers for all nodes and ⊗ is the Kronecker
Product operator. Introducing the weight-error global vector
w̃i = w(o) −wi and noting that Gw(o) = w(o), we rewrite
equations (12) and (13) as

Ψ̃i = w̃i−1 −DiUT
i (Uiw̃i−1 + vi) (15)

w̃i = GΨ̃i

= Gw̃i−1 −GDiUT
i (Uiw̃i−1 + vi) (16)

which can be further simplified to

w̃i = G
(
I−DiUT

i Ui

)
w̃i−1 −GDiUT

i vi (17)

where the step-size matrix, Di, is simply

Di = D (I + γNCBi) (18)

Now assuming that the noise variance is not estimated
exactly, resulting in a mismatch, and taking the expectation
on both sides of (14) gives

E [Bi+1] = (1− αNC) E [Bi] +
αNC

2
(E [Ei]− S)

= (1− αNC) E [Bi] +
αNC

2

(
EMSEi − S̃

)

(19)

where EMSEi is a diagonal matrix containing EMSE val-
ues of the entire network from the previous iteration, and
S̃ = diag

{
(σ2

1 − σ̂2
1)IM , (σ2

2 − σ̂2
2)IM , ..., (σ2

N − σ̂2
N )IM

}
is

a diagonal matrix containing the values for the mismatch in
the estimation of the noise variance. For perfect estimation,
this matrix disappears whereas for the ZNCDLMS algorithm,
the matrix contains the actual noise variance values only.

Now taking the expectation on both sides of equation (18)
results in

E [Di] = D (I + γNCE [Bi]) (20)

and finally taking the expectation for the equation (17) leads
to

E [w̃i] = G (I− E [Di]RU) E [w̃i−1] , (21)

where RU = UT
i Ui is the auto-correlation matrix for the

regressor vectors across the entire network and is block
diagonal.

From (21) and the fact that the matrix RU is block diagonal,
it can be seen that the system is stable if, for each node

0 < µk <
2

(1 + γNCE [βk,i]) λmax (Ru,k)
, k = 1, ..., N

(22)
where λmax (.) denotes the maximum eigenvalue of Ru,k. The
values for the parameters are chosen arbitrarily and usually
depend on the signal-to-noise ratio (SNR). The effect of the
value of λmax and γNC on µk will be further discussed in the
simulations section.

V. STEADY-STATE ANALYSIS OF NCDLMS

In this section we briefly look at the steady-state perfor-
mance of the NCDLMS algorithm. From Table I we can
note that the Lagrange multiplier update for any node k
is independent of other nodes. Therefore, each node can
be treated independently in order to obtain the steady-state
misadjustment. Thus, the steady-state misadjustment for any
node k is

Mk =


1 +

γσ2
v,k (1− a)

2
+

γ2ασ2
v,k

2 (2− α)
(
1 + γσ2

v,k (1− a) /2
)




.
µkTr {Ru,k}

2
, (23)

where a = σ̂2
v,k/σ2

v,k is the ratio between the estimated and
actual noise power at node k. For a perfect estimate, this would
result in a = 1, for a mismatch 0 < a < 1, and a = 0
for the case of ZNCDLMS. Now at steady-state the Lagrange
multiplier update equation becomes

βk,ss =
σ2

v,k

2
(Mk + 1− a) . (24)

Similarly, we get an expression for β2
k,ss

β2
k,ss =

α

(1− α)
βk,ssσ

2
v,k (Mk + 1− a)

+
σ4

v,k

4 (1− α)2
(Mk + 1− a)2 (25)

Now solving for the steady-state mean-square value for the
entire network, we get the weight-error equation [2]

‖w̄ss‖2σ = bT
ss [IM2N2 − Fss]

−1
σ, (26)

where bss = bvec
{
RvD2

ssΛ
}

, Λ is a block-diagonal matrix
containing the eigenvalues for the entire network, Rv is the
auto-correlation matrix for the noise vector at all nodes, and
Fss is the steady-state weighting matrix given by

Fss = [IM2N2 − (IMN ¯ΛDss)− (ΛDss ¯ IMN)
+ (Dss ¯Dss)A]

(
GT ¯GT

)
. (27)

Using σ̄ = (1/N) bvec {IMN} = qη in (26), the mean-
square deviation (MSD) is given by

ηss = bT
ss [IM2N2 − Fss]

−1 qη. (28)

VI. SIMULATION RESULTS

Simulations have been carried out for adaptive networks
with 20 nodes. The unknown vector length is fixed at 5
throughout the simulations. The noise at each node is assumed
to be independent of the noise at other nodes.

All results have been obtained for an average SNR of 10 dB.
The step size used for the DLMS algorithm is 0.01. For the
VSSDLMS algorithm, αVSS = 0.997, γVSS = 10−4 and the
step size is initialized at 0.01. For the NCDLMS, µk = 0.001,
γ = 180 and β = 10−3.
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Fig. 2. MSD comparison of distributed LMS, DLMS, DLMS with adaptive
combiners, VSSDLMS and NCDLMS for a network of 20 nodes.

Figure 2 depicts the MSD comparison for various distributed
adaptive algorithms. As can be seen from these this figure
that the NCDLMS algorithm outperforms the rest of the
algorithms.

Figure 3 reports the MSD comparison of NCDLMS with
various degrees of noise variance estimate mismatch. A mis-
match of 50% between the actual noise variance and its esti-
mate results in just 1.5 dB performance degradation. Moreover,
it is interesting to note that even for the ZNCDLMS algorithm,
the performance degradation is about 3 dB. Also, as can be
seen from this figure that the performance of the ZNCDLMS
algorithm is comparable to that of the VSSDLMS algorithm.

Next we look at the stability analysis of the algorithm. Here,
the auto-correlation matrix, Ru,k, is taken to be an identity
matrix. Table II gives results for steady-state MSD for the
network when the value of µk is varied, for k = 3, γNC = 0.1,
αNC = 0.01, and SNR = 20 dB. From this table, it can be seen
that the simulations corroborate the theoretical finding for the
steady-state MSD. Moreover, the bound in (22) holds true.

µk γNC SS-MSD (simulation) SS-MSD (theory)
1.9 0.1 -15.3 -15.7
1.75 0.1 -18.4 -18.6
1.5 0.1 -21.5 -21.5
1 0.1 -25.8 -26

TABLE II
COMPARISON OF MSD, FROM SIMULATIONS AND THEORY.

Finally, the computational complexity of the NCDLMS
algorithm is two more multiplications and three more additions
than the VSSDLMS algorithm in addition to the algorithm for
the noise variance estimation at each node. The performance
improvement is worth deploying this algorithm in real appli-
cations.

VII. CONCLUSION

In this work, the performance behavior of the NCDLMS al-
gorithm is investigated and analyzed. First, the step-size range
for each node is derived. Second, the steady-state analysis
is carried out and a comparison is shown for the simulated
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Fig. 3. MSD comparison of VSSDLMS, ZNCDLMS with NCDLMS with
various degrees of noise power mismatch.

and theoretical values for steady-state MSD. The comparison
also verifies the step-size range. Third, a comparison scenario
among the most popular algorithms, including the DLMS and
DRLS algorithms, is carried out under the assumption that
full knowledge of the noise variance is available. Finally, the
robustness of the NCDLMS is fully investigated. Simulation
results show that even with 50% mismatch in noise variance
estimation, the algorithm performs better than the rest of the
algorithms, even the VSSDLMS algorithm. Furthermore, if
the noise variance estimate process is removed to get the
ZNCDLMS algorithm, the performance and complexity both
become almost similar to that of VSSDLMS algorithm.
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