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Abstract—This paper presents the design of a new diffusion
algorithm over adaptive networks. The algorithm assumes knowl-
edge of variance of additive noise. The design is based on the
Noise-Constrained Least-Mean Squares (LMS) Algorithm and
the new algorithm becomes a type of variable step-size algorithm
for which the step-size variation rule results directly from the
constraint. The design of the Noise-Constrained Diffusion LMS
algorithm has been included. Simulation results show that the
new algorithm outperforms the existing Diffusion LMS algorithm
as well as its Incremental counterpart.

Index Terms—Adaptive filters, adaptive networks, diffusion,
noise constrained algorithms.

I. INTRODUCTION

There has been considerable work done for the problem of
distributed estimation over adaptive networks in recent times
[1]-[5]. Unlike ordinary algorithms, the nodes in the network
cooperate with the closest neighbors in order to estimate some
parameters of interest. The spatial and temporal diversity of
the network is utilized in order to improve the performance
significantly.

Authors have suggested several modes of cooperation, each
having its own merits and demerits. In [1], the authors suggest
an incremental approach in which each update is simply
transferred to the next node which then uses its own data
set to improve upon the update and pass it on to the next
node. This method is not reliable as node failure will result
in a broken link and the whole network would break down.
The authors in [2] suggest a diffusion algorithm as a solution
to this problem. Nodes share their estimates with the closest
neighbors. Each node then combines all estimates using some
combiner methodology. The node then performs adaptation on
this combined estimate and the new estimate is then diffused
into the network. A simpler version of this algorithm is
the probabilistic diffusion algorithm [3]. Several combination
rules have been used by authors such as Metropolis [4] and
relative degree [5]. The authors in [6] used a constrained
based approach to come up with their own methodology for
combining the estimates from the neighbors and improving the
estimate. Adaptive combining has also been tried in order to
improve performance [2], [7].

In this paper, we look at a new constrained approach to the
problem. We assume knowledge of the additive noise variance

[9] and use the Robbins-Munro algorithm [10] to come up with
a new LMS algorithm. Extensive simulation results are carried
out to assess the performance of the proposed algorithm and as
expected improved results are obtained using this technique.

The paper is organized as follows. Section II briefly de-
scribes the diffusion LMS algorithm and the adaptive network
setup. The new algorithm is then derived in Section III. Section
IV gives the mean transient analysis of the new algorithm.
Simulation results and comparisons are given in Section V
and conclusions are presented in Section VI.

II. ADAPTIVE NETWORKS AND DIFFUSION LMS
SOLUTIONS

The notation used in this paper is as follows. Boldface
letters are used for vectors and matrices while normal
letters denote scalars. Matrices are denoted by capital letters
and vectors by small letters. The notation (.)

T is used for
transpose and (.)∗ for conjugate transpose. For scalars, (.)∗

denotes complex conjugation. E [.] denotes the expectation
operator.
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Node k+1
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Node N
{dN(i), uN,i}

Fig. 1. Adaptive network of N nodes

As shown in Fig. 1, consider a network of N nodes
arranged in a predefined topology with each node having Nk

neighboring nodes, including itself. At time i each node has
access to an input regressor row vector uk,i of length M and an
output to an unknown system, dk(i) that are related according
to

dk (i) = uk,iwo + vk (i) (1)
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where wo is an unknown column vector of length M defining
the parameters of the unknown system and vk(i) is additive
noise. Diffusion LMS algorithms use the data to find an esti-
mate for the unknown vector. There are two different strategies
for this estimation. The first strategy collects estimates from its
neighbors from the previous iteration and combines them using
some convex combiner method. Then the combined estimate
is used to calculate a new estimate using the available data
{dk(i), uk,i}

{

φk,i−1 =
∑

l∈Nk

clkψl,i−1,

ψk,i = φk,i−1 + µku
∗
k,i (dk (i) − uk,iφk,i−1) ,

(2)

where φk,i−1 is the combined estimate and ψk,i is the estimate
for node k at iteration i. This is known as Combine-then-Adapt
(CTA) algorithm [2].

Another variation of the algorithm is achieved by reversing
the order of the equations. The new algorithm is known as
Adapt-then-Combine (ATC) algorithm [7], [8].

{

φk,i−1 = ψk,i−1 + µku
∗
k,i (dk (i) − uk,iψk,i−1) ,

ψk,i =
∑

l∈Nk

clkφl,i. (3)

Figure 2 shows the ATC version of the algorithm.
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Combiner
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  k, i

dk, i ,uk, i

Fig. 2. Adaptive network of N nodes

The new algorithm will be tested against both these schemes
and it will be shown that performance improves without much
increase in complexity.

III. NOISE-CONSTRAINED LMS ALGORITHM

A. Problem Formulation

The objective for a diffusion algorithm is to minimize the
cost function J(w) with respect to w where J(w) is given by

min
w
J(w) =

N
∑

k=1

E
[

|dk − ukw|2
]

. (4)

This is a global cost function. The local cost function at each
node would look like [8]

Jk (w) = E
[

|dk − ukw|2
]

. (5)

Completing the squares and noting that E [u∗
kuk] = Ru,k,

we can rewrite (5) as

Jk (w) = ‖w − wk‖2
Ru,k

+ mmse. (6)

Now the global cost function becomes

J (w) = E
[

|dk − ukw|2
]

+

N
∑

l6=k

‖w − wl‖2
Ru,l

. (7)

This model assumes that each node has access to the entire
network. In a practical setup, however, a node has access
only to its close neighbors. So the cost function has to be
approximated with only data from neighbors being shared at
each node. As a result the weighting matrix for the 2nd term
does not remain Ru,l but instead has to be replaced by a
constant weighting factor blk. The value of wl is also replaced
by its intermediate estimate from node l, ψl. Eventually, the
cost function looks like

Jk (w) = E
[

|dk − ukw|2
]

+
∑

l∈Nk/{k}

blk ‖w − ψl‖2
. (8)

Defining J1
k (w) = E

[

|dk − ukw|2
]

, we get

min
w
Jk (w) = J1

k (w) +
∑

l∈Nk/{k}

blk ‖w − ψl‖2. (9)

B. Algorithm Design

Assuming we have knowledge of the additive noise variance
σ2

v,k we can modify the cost function as follows. The 2nd term
in the above equation goes to zero asymptotically. This means
the problem boils down to minimizing J1

k (w) with respect to
w based on the constraint J1

k (w) = σ2
v,k. The Lagrangian for

this problem is [11]

min
wk

J ′
k (wk) = J1

k (wk) +
∑

l∈Nk

blk ‖wk − ψl‖2

+ γλ
(

J1
k (wk) − σ2

v,k

)

− γλ2
k, (10)

where the last term is added as a correction term to avoid any
spurious behavior. Using the Robbins-Munro algorithm [10],
the adaptive solution now becomes

wk,i = wk,i−1 − µk
∂J ′

k (wk)

∂wk
, (11)

λk,i = λk,i−1 + β
∂J ′

k (wk)

∂λk,i−1
. (12)

1) Steepest Descent Solution: Solving the first partial
derivative gives

∂Jk (wk)

∂wk
= (1 + γλk) (Ru,kwk − Rdu,k)

+
∑

l∈Nk/{k}

blk (wk − ψl). (13)

Similarly, solving the 2nd partial derivative gives

∂J ′
k (wk)

∂λk
= γ

(

E
[

|dk − ukw|2
]

− σ2
v,k

)

− 2γλk. (14)
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which leads to

λk,i = λk,i−1 + βγ
(

E
[

|dk − ukw|2
]

− σ2
v,k

)

− 2βγλk,i−1.

(15)
Replacing βγ by β/2 and incorporating the partial deriva-

tives into the algorithm, we get the steepest descent solution

wk,i = wk,i−1 + µk (1 + γλk,i−1) (Ru,kwk − Rdu,k) ,

+ υk

∑

l∈Nk/{k}

blk (ψl,i−1 − wk,i−1) (16)

λk,i = (1 − β)λk,i−1

+
β

2

(

E
[

|dk − ukw|2
]

− σ2
v,k

)

. (17)

The first equation can be broken into a two-step process,
namely

ψk,i = wk,i−1 + µk (1 + γλk,i−1)

. (Ru,kwk − Rdu,k) , (18)

wk,i = ψk,i + υk

∑

l∈Nk/{k}

blk (ψl,i−1 − ψk,i−1)

= ψk,i (1 − υk + bkkυk) + υk

∑

l∈Nk/{k}

blkψl,i−1

=
∑

l∈Nk

clkψl,i−1, (19)

where
clk =

{

1 − υk + υkbkk , l = k
υkblk, l 6= k

Combining (17), (18) with (16) gives us the steepest descent
solution to the noise-constrained problem.

2) Noise-Constrained Diffusion LMS: To get an adaptive
solution we simply replace Ru,k, Rdu,k and E

[

|dk − ukw|2
]

by their instantaneous values. Noting that ek(i) = dk(i) −
uk,iwk,i−1, we get

ψk,i = wk,i−1 + µk (1 + γλk,i−1) u∗
k,iek(i), (20)

wk,i =
∑

l∈Nk

clkψl,i, (21)

λk,i = (1 − β)λk,i−1 +
β

2

(

e2k,i − σ2
v,k

)

, (22)

where
clk =

{

1 − υk + υkbkk , l = k
υkblk, l 6= k

So equations (19)-(21) form the Noise-Constrained Diffu-
sion LMS (NCDLMS) algorithm using the ATC approach. In
case of CTA the error is given by ek(i) = dk(i) − uk,iψk,i−1

and the algorithm would become

ψk,i−1 =
∑

l∈Nk

clkwl,i−1 (23)

wk,i = ψk,i−1 + µk (1 + γλk,i−1) u∗
k,iek(i) (24)

λk,i = (1 − β)λk,i−1 +
β

2

(

e2k,i − σ2
v,k

)

(25)

IV. MEAN TRANSIENT ANALYSIS

Here we show briefly the analysis for the ATC scheme. Let

w(o) ∆
= 1N ⊗ wo, di

∆
= col {d1 (i) , ..., dN (i)} ,

Ui
∆
= diag {u1,i, ...uN,i} , vi

∆
= col {v1 (i) , ...vN (i)} ,

where ⊗ is the Kronecker product and the
N × 1 vector di is given by di = Uiw(o) + vi.
Defining D = diag {µ1IM, ..., µNIM} and Li−1 =
diag {(1 + γλ1,i−1)IM, ..., (1 + γλN,i−1)IM}. Let the
combiner weight-matrix be defined as C ∆

= [c1, ..., cN ], then
we have G ∆

= C⊗IM . Now defining the weight-error vector as
w̃i

∆
= wo −wi and noting the fact that wi ∆

= col {wi, ...,wN},
we have

w̃i ∆
= w(o) − wi. (26)

Rearranging the algorithm slightly we get

w̃i = w(o) − wi

= G
(

w(o) − ψi
)

= G
[

w(o) − wi−1 − DLi−1U∗
i

(

di − Uiwi−1
)

]

= G
[

w̃i−1 − DLi−1U∗
i

(

Uiw̃i−1 + vi

)]

. (27)

Taking expectation and solving gives

E
[

w̃i
]

= G (INM − DE [Li−1] RU ) E
[

w̃i−1
]

. (28)

Let E [Bi−1] = (INM − DE [Li−1] RU ). We can see then
that the stability of the system depends on λ̄ |GE [Bi−1]| <
1 where λ̄ defines the eigenvalues for |GE [Bi−1]|. The 2-
norm of a matrix is defined as the largest singular value of
the matrix. Using the 2-norm we can express the product of
G and E [Bi−1] as

‖GE [Bi−1]‖2 ≤ ‖G‖2 . ‖E [Bi−1]‖2 . (29)

Since we already have G = C⊗IM and we know that Bi−1

and RU are Hermitian and block diagonal, the above equation
reduces to

∣

∣λ̄max (GE [Bi−1])
∣

∣ ≤ ‖C‖2 .
∣

∣λ̄max (E [Bi−1])
∣

∣ . (30)

A combiner rule is picked such that ‖C‖2 ≤ 1 so that
the cooperative scheme is providing robustness over the non-
cooperative scheme. For a symmetric matrix C, we have
‖C‖2 = 1 so that we get

∣

∣λ̄max (GE [Bi−1])
∣

∣ ≤
∣

∣λ̄max (E [Bi−1])
∣

∣ . (31)

This means that the cooperative system will always be stable
as long as the non-cooperative system is stable. For the non-
cooperative system to be stable, the step-size should be such
that
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∣

∣λ̄max (E [Bi−1])
∣

∣ ≤ 1.

Expanding and solving gives us the step-size range for node
k as

0 < µk ≤ 2

λ̄max (E [1 + γλk,∞] .Ru,k)
, (32)

where λk,∞ is the steady-state value for the Lagrangian
and should ideally reduce to zero resulting in the familiar
expression for the step-size

0 < µk ≤ 2

λ̄max (Ru,k)
. (33)

V. SIMULATION RESULTS

Simulation results are shown to illustrate the performance
of the NCDLMS algorithm. Comparisons are shown with
Diffusion LMS (DLMS) algorithm. Simulations have been
done for a network containing N = 15 nodes connected as
shown in Fig. 3. Fig. 4 shows the characteristics of the signals
and noise variances at each node of the network. The unknown
vector is of length M = 5 and is taken to be wo = 1/

√
5

where 1 is a column vector of length M containing all 1s. The
input regressor vectors are zero-mean independent Gaussian
random variables with variance for each node as per the SNR
shown in Fig. 4 (top). The additive noise is also zero-mean
Gaussian with variance as plotted in Fig. 4 (bottom). The
NCDLMS algorithm is compared with DLMS for both the
CTA as well as the ATC version. Also plotted is the case where
no cooperation takes place between nodes, that is, simple LMS
adaptation without combining. Step-sizes for the DLMS and
no cooperation case are all set to µk = 0.01. For the NCDLMS
algorithm, the initial step-size is set at µk = 0.025 whereas
β = 0.01 and γ = 141. For all three diffusion cases, the
Metropolis rule [4] is used for combining.

123

4
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10

1512

14

11 13

8 75

9

Fig. 3. Adaptive network of N = 15 nodes

Fig. 5 shows the Mean Square Deviation (MSD) and Excess
Mean Square Error (EMSE) for all algorithms. Since the
convergence rate is approximately the same, it can be seen that
the difference is in the error floor. The ATC scheme slightly
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Fig. 4. SNR (top) and Noise-variance σ2

v,k
(bottom) for N = 15 nodes

outperforms the CTA scheme, however, NCDLMS algorithm
provides the best performance. Fig. 6 depicts how the step-
size µk(1 + γλk,i varies with time for node 13. As expected,
λk goes to zero for all nodes asymptotically resulting in a
constant step-size. A similar trend is followed for the step-size
at each node. Fig. 7 shows the steady-state MSD and EMSE
values for each node and as can be seen from this figure great
improvement in performance is obtained through the use of
the proposed algorithm.

VI. CONCLUSION

In this paper we have derived a new algorithm for adaptive
networks based on the constraint that the additive noise vari-
ance is known at all nodes. The design of the new algorithm
is shown followed by its mean transient analysis. Simulation
results are then included that show clearly the improvement
achieved by the new NCDLMS algorithm over the 2 versions
of the DLMS algorithm. Results show improvement over the
entire network as well as at individual node level. Furthermore,
this improvement is achieved at the cost of a small increase
in complexity, making the NCDLMS algorithm a better alter-
native over the DLMS algorithms.
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