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Abstract- This paper presents the performance of Space-Time 
(ST) codes over rapid fading channels. A tight upper bound on 
the pairwise error probability (PWEP) of ST codes over rapid 
fading channels is derived. Also, an upper bound on the bit 
error probability (BEP) is evaluated using the derived PWEP. 
The existing and new bounds are evaluated for different QPSK 
ST codes and compared to the simulation results. The new 
bound is shown to be tighter than the existing bound by almost 2 
dBs and is very tight to the simulation results. 

I. INTRODUCTION 

As technology advances, wireless systems are required to 
provide higher data rates with improved quality of service 
and better support for multimedia applications. All these 
requirements have led to new developments in wireless 
communications. In general, diversity and error control codes 
are known to improve the link quality of wireless systems 
[ 1,2]. In particular, transmit diversity can be used to increase 
the transmission rate. Clearly, systems combining transmit 
diversity and error control codes are promising to provide 
higher transmission rate at good quality via providing 
diversity in time and space. 

The concept of space-time (ST) codes had appeared first in 
[3] as the delay diversity system, where different symbols are 
simultaneously transmitted via different transmit antennas. In 
[4], this concept was extended to transmit N encoded symbols 
from a trellis encoder simultaneously using N transmit 
antennas. The performance of ST coded systems was 
analyzed in [4] for rapid and quasi-static fading channels and 
upper bounds on the pairwise error probability (PWEP) were 
derived. From the derived bounds, code design criteria were 
established for rapid and quasi-static fading channels. A 
similar analysis was carried out for the case of correlated 
transmit branches. In [ 5 ] ,  the performance of ST coded 
systems under different mobility conditions was investigated. 
The design criteria of ST codes for quasi-static fading 
channels in [4] were examined for frequency-selective fading 
channels. In [6],  the existence of non-ideal channel state 
information (CSI) at the receiver was examined. The 
performance of ST codes in this case was also analyzed. 
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All the mentioned bounds appear to be loose since they are 
based on the Chemoff bound of the PWEP. In this paper, a 
tight upper bound on the PWEP of ST coded systems over 
rapid fading channels is derived. In addition, an expression 
for the bit error probability (BEP) is presented. It is based on 
the transfer function of the trellis encoder. 

The paper starts with a general description of a typical ST 
coded system and the existing bound on the PWEP over rapid 
fading channels. Then, the tight bound is presented. The BEP 
is then evaluated for two QPSK ST schemes. Finally, some 
conclusions and suggestions for future work are presented. 

11. SYSTEM MODEL 

A typical system that employs ST coding using N transmit 
and A4 receive antennas is shown in Figure 1. The transmitter 
consists of a ST trellis encoder, serial-to-parallel converter, N 
modulators and a vector block interleaver. The ST encoder 
encodes the input bits into N symbols drawn from a signal 
constellation. The ST signals are interleaved using a vector 
block interleaver. Each element in the interleaver is a vector 
containing the N signals to be transmitted via the N transmit 
antennas. The depth and span of the interleaver depend on the 
channel’s fading rate VjT) and the encoder’s constraint 
length, respectively. The interleaver is used in order to break 
the memory of the channel so that it approaches the behavior 
of independent fading channels, and hence the diversity 
provided by the coded system is fully utilized. The ST siganls 
are distributed over the N transmit antennas via the serial-to- 
parallel converter and then modulated. 

The received signal at the j I h  receive antenna is a noisy 
superposition of all transmitted symbols over all transmit 
antennas and is given by: 

(1) 

where q! is an AWGN modeled as independent samples of a 
zero-mean complex Gaussian random process with variance 
Nd2 er dimension. The coefficient a,,,. is the path gain from 
the I transmit antenna to receive antenna at time t 

N 

4 = Cay,,c: + 17: ’ 
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which is a sample of a complex Gaussian random process 
with a variance of 1. Also, C; is the transmitted symbol fi-om 
the i I h  transmit antenna at time t. At the receiver, Maximal 
Ratio Combining (MRC) is used to combine signals at 
different receive antennas and the Viterbi algorithm is 
employed at the decoder. 

Daz 
bits 

The performance of ST coded systems employing N 
transmit and M receive antennas is derived in [4 ]  for rapid 
fading channels. Define the codeword Cl as: 

Cl = C I C  2. . .CI = c;c; .... c,"c;c ,'..a. c," .... c;c; .... cf" 
Consider that it has been transmitted pver I time intervals 

and was erroneously dpoded as Cl. The conditional 
probability of deciding C, in favor of C, using maximum 
liklihood decoding is upper bounded using the Chernoff 
bound [4 ]  as: 

( 2 )  
where 

P, I exp[-di (Cl,&l) /4No] , 

- 
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After going through the derivation in [4 ] ,  the conditional 
probability in (2) yields the unconditional probability as: 

( 4 )  
rcq i=l 

Where r ] = { t : g r  # E l }  and c,  =(c,!c ,?.... c y )  is the 
codeword of ST symbols transmitted simultaneously over all 
transmit antennas at time 1. 
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Figure 1 :  General ST system (a) Encoder, (b) Decoder. 

Define the cardinality of the set r ]  to be L,= 1771. Then, L= 
min{L,} is the length of the shortest error path with L time 
intervals and can be referred to as the Space-Time Minimum 
Time Diversity (ST-MTD) of the code. In other words, ST- 
MTD is the "branch-wise'' Hamming distance (HD) in 
conventional trellis codes, by considering the whole 
codeword G as one symbol. Since the above bound is derived 
fiom the Chernoff bound, it is expected to be loose. The 
proposed tight bound is derived in the following. 

111. TIGHTER UPPER BOUND 

Tight bounds on the BEP of trellis coded systems employing 
receive diversity were derived in [7] for fading environments. 
In this paper, the same methodology is used to derive a tight 
bound on the PWEP of ST coded systems. This bound is 
based on the exact expression of the conditional PWEP given 
by: 

Define an NXN matrix, A,=C,.C:", where 

C, = [(c,! - ;,!)(c,? - 2;) ...( c," -;,")I' and CT' is the 
conjugate transpose of C,. The A, matrix contains the 

- I  

difference term between the correct and error codewords in 
(3). Then, the distance expression in (3) can be represented in 
matrix form [4 ]  as: 

Where Q j ,  = [ a l . :  a2j9l ... .... aM,: ] represents the fading 

can be further simplified using similarity transformation of 
the matrix A,. It is expressed as a product of a diagonal 
matrix D,, whose diagonals are the eigenvalues of A,, and a 
unitary matrix containing the set of orthonormal eigenvectors 
of the matrix A,: i.e., 

coefficients at the J .,A receive antenna. The expression in (6) 

VfPAtVI= DI, (7) 

where VI is a matrix whose columns are the N eigenvectors of 
the matrix A,. Defining A,,, as the ith eigenvalue of AI, and 
BJf= [Pl j , I  &,I ... . . .&,I] = Qj,P 

(8) 
- 
- [alj,f a2J,f * * '  *.. aM,fl V2, f  * * * .* vN,,], 

then, the conditional PWEP in (5) is simplified to: 

Define the variables d , ,  and n, as: 

j=l 

Then the expression in (9) simplifies to: 
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Since all the eigenvalues h,,,'~ are zero except one [4], then 
the nonzero d,., is replaced by: 

, = I  

So, the inner summation in (10) reduces to d,T,, where the 
quantity d ,  =I cl -c ,  1' (E ,  /4N,) and r,=(z,,: Ai,, # O}. 
Hence, the PWEP becomes: 

Since lflg,,1's constitute a form of sum of the N av,,'s at the 
j ih  receive antenna as appears in (S), then they have Rayleigh 
distribution with mean square E[I&I2]=1. Hence, l&12's are 
exponentially distributed with unity mean. Therefore, the 
variables r,'s, which are sums of exponentially distributed 
random variables, will have an M-Erlang distribution with 
parameter one [SI. The probability density function (pdn of 
this distribution is written [SI as: 

The PWEP in (12) is conditional on the fading coefficients. 
To find the unconditional probability, it is averaged with 
respect to these coefficients, resulting in: 

Defining 6,=di/(l+d,) and w, =r,(l+d,), and using pdf  
transformation formula [SI, then the unconditional PWEP is 
written as: 

. . f&d d,, ... dui (15) 

Where 77 = { t  : c, f E , } .  Defining L,= 177) and Sm=min{6,: 
t E  q}, then it is clear that: 

/=I , = I  

Since the function e$ix)exp(x2) is a monotonically 
decreasing function for x 1 0, then the PWEP is upper 
bounded by: 

Where Q = E m ,  . Since each of the 4's .  The variable i2 

is a sum of L, M-Erlang random variables with parameter 
one, and hence its distribution is an MLgErlang distribution 

1-l 

with parameter equal to one. Substituting in the PWEP 
expression: 

P I  1 1 
2(ML, - l ) ! G  (1 + d , y  

The integral in (18) is evaluated using the following 
equality [9]: 

. m  

Then, the PWEP is evaluated to be: 

Since L is the length of the shortest error path, and since 
L5 L,, then the PWEP can be written as: 

The new bound consists of two terms: the first one is the 
tightening constant while the second one is the same as in 
Equation (4). The tightening constant is a function of the 
number of receive antennas, the ST-MTD of the ST code and 
the SNR of the channel. It can be easily shown that the 
constant is always less than one, proving the tightness of the 
new bound. 

The BEP is derived using the modified transfer function 
approach [9] as: 

Where T(I,D) is the modified transfer function of the ST 
code and k is the number of input bits to the ST encoder. 
Finally, the BEP is evaluated as: 

Two examples are considered to test the tightness of the 
bounds. In Figure 2, the existing and the new bounds along 
with simulation results of the 4-state QPSK ST code in [4] 
are plotted. The same information regarding the QPSK ST 
code in [lo] is shown in Figure 3. It can be seen that the 
existing bound is loose compared to the simulation results 
while the new bound is very tight. Also, the new bound is 
tighter than the existing one by almost 2 dB. The bound has 
also been evaluated for other codes and has consistently 
shown tightness to simulation results. 
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IV. CONCLUSIONS & FrrrvRE WORK 

A tight bound on the PWEP of ST coded systems over 
rapid fading channels was derived. The corresponding BEP 
was evaluated from the existing and new PWEP bounds for 
different ST codes in the literature. Results showed that the 
new bound is very tight to the simulation curves. Future work 
concentrates on deriving tight bounds for the cases of 
correlated transmit branches as well as for correlated fading 
channels. 
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Figure 2: Performance of the 4-state QPSK ST code designed in [4] 
Boundl: existing, Bound2: new, Rx: # of receive antennas. 
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Figure 3: Performance ofthe 4-state QPSK ST code in [lo] for one and two 
receive antennas. 

1089 


