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Abstract— In this paper we derive closed-form expressions for
the single-user capacity of Maximum Ratio Combiner (MRC)
system system, taking into account the effect of imperfect channel
estimation at the receiver. The channel considered is a slowly
varying spatially independent flat Rayleigh fading channel. The
complex channel estimate and the actual channel are modelled
as jointly Gaussian random variables with a correlation that
depends on the estimation quality. Two adaptive transmission
schemes are analyzed: 1) optimal power and rate adaptation; and
2) constant power with optimal rate adaptation. Our numerical
results show the effect of Gaussian channel estimation error on
the achievable spectral efficiency.

I. INTRODUCTION

It is widely accepted that using diversity at the transmitter
or at the receiver of a wireless communication system can
improve significantly the performance of wireless links. Di-
versity combining, which skillfully combines multiple replicas
of received signals has long been as one of the most efficient
techniques to overcome the destructive effects of multipath
fading in wireless communication systems. There are several
diversity combining methods employed in communication re-
ceivers including maximal ratio combining (MRC), equal gain
combining (EGC), selection combining (SC), and a combina-
tion of MRC and SC, called generalized selection combining
(GSC). By definition, MRC combiner linearly combines the
individually received branch signals so as to maximize the
instantaneous output signal-to- noise ratio (SNR) [1–3].

Most system designs assume that perfect channel estimation
is available at the receiver. In practise, however, the channel
gains have to be estimated at the receiver for diversity com-
bining which can be obtained either from a pilot signal or
data signals (by applying a clairvoyant estimator). The work
in [4] analyzed the performance of MRC with pilot tone-based
weighting on frequency-selective Rayleigh fading channels.
The pilot tone was assumed to be separated from the data
signal and the resulting channel-estimation error was shown
be to be Gaussian. Previous work on the analysis of imperfect
channel estimation with no diversity can be found in [5] and
[6]. In [7], Gans modelled the channel estimation errors as
complex Gaussian and derived the distribution of the SNR
statistics which has been used by Tomiuk in [8] to obtain the
average probability of error for the MRC diversity schemes.

The pioneering work of Shannon [9] has established the
significance of channel capacity as the maximum possible rate
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at which information can be transmitted over a channel. In
[12], the capacity of a single user flat fading channel with
perfect channel information at the transmitter and the receiver
is derived for various adaptation policies, namely, 1) optimal
rate and power adaptation (opra), 2) optimal rate adaptation
and constant power (ora), and 3) channel inversion with fixed
rate (cifr).

The first scheme requires channel information at the trans-
mitter and receiver, whereas the second scheme is more
practical since the transmission power remains constant. The
last scheme is a suboptimal transmission adaptation scheme,
in which the channel side information is used to maintain a
constant received power by inverting the channel fading [12].
In [13], the general theory developed in [12] was applied to
achieve closed-form expressions for the capacity of Rayleigh
fading channel under different adaptive transmission and di-
versity combining techniques. In [16], the channel capacity
of adaptive transmission with MRC in correlated fading was
derived. Two kinds of correlations were considered including
equal branch SNR and between any pair of branches, and un-
equal branch SNRs and arbitrary correlation between branches
such that the eigenvalues of the branch covariance matrix are
distinct. In [17], the capacity of MRC over generalized Rician
fading channels was discussed.

In this paper, we extend the results in [13] to obtain closed-
form expressions for the single-user capacity of MRC system,
in the presence of Gaussian channel estimation errors. The
contribution of this paper is to derive closed-form expressions
for two adaptive transmission schemes including their asymp-
totic approximations and upper bounds and these schemes are:
(1) optimal simultaneous power and rate adaptation (opra).
(2) optimal rate adaptation with constant transmit power (ora).

The paper is organized as follows. In Section II, the system
model used in this paper is discussed. In Section III, we derive
closed-form expressions for the channel capacity under two
adaptation schemes; opra and ora including their asymptotic
approximations and upper bounds in sub-sections III-A and
III-B, respectively. Results are presented and discussed in
Section IV. The main outcomes of the paper are summarized
in Section V.

II. SYSTEM MODEL
Consider an L-branch diversity receiver in slow fading chan-

nels. Assuming perfect timing and inter-symbol interference
(ISI) free transmission, then, the received signal on the lth
branch rl at ith symbol interval can be expressed as

rl = glsi + nl l = 1 . . . L (1)

c© SQU-2009 ISSN: 1813-419X 1
429

Naser
Rectangle



INTERNATIONAL CONFERENCE ON COMMUNICATION, COMPUTER AND POWER (ICCCP’09) MUSCAT, FEBRUARY 15-18, 2009

where gl is the zero mean complex Gaussian distributed
channel gain,nl is the complex additive white Gaussian noise
with the variance 2N0, and si is the date symbol taken from
normalized unit energy Eb set S at the ith symbol interval. The
actual channel gains of L diversity branches are independent
and identical distributed. We assume the noise per branch is
identical for all branches. The pdf of the output of MRC
combiner SNR γ with estimation errors has been derived by
Gans [7] and re-arranged in a simple pdf form [8], and is given
by

pγ(γ) =
L∑

k=1

(
L− 1
k − 1

)
(ρ2)k−1(1− ρ2)L−k

(
1
γt

)k

γk−1e
−γ
γt

=
L∑

k=1

WL−1
k−1 (ρ2)
Γ(k)

γk−1e
−γ
γt (2)

where WL−1
k−1 (ρ) =

(
L−1
k−1

)
(ρ2)k−1(1− ρ2)L−k is representing

the weighting coefficients in the sum, and γt is the average
SNR per bit per branch (γt = Eb

N0
) and ρ denotes the

correlation between the actual channel coefficients gl and their
estimates ĝl (i.i.d). The actual channel gain can be related to
the channel estimate by

gl = ρĝl + zl (3)

where ρ is a complex number representing the normalized
correlation between gl and ĝl, and zl is a complex Gaussian
Random Variable (R.V) independent of ĝl with zero mean and
variance σ2

z , it defined as :

ρ2 =
∣∣E[glĝ∗l ]

∣∣2 (4)

where E[.] stands for mathematical expectation. In a sys-
tem with no estimation errors ρ = 1, (the summation of
WL−1

k−1 (ρ2) = 1), the distribution of γ in (2) reduces to

fγ(γ) =
(

1
γt

)L
γL−1

Γ(L)
e
−γ
γt (5)

III. ADAPTIVE CAPACITY POLICIES

In this section, we derive close-form expressions for dif-
ferent adaptive schemes with MRC over Rayleigh fading
channels. In the derivation, we will rely on the main results
from [13].

A. Optimal Adaptation At The Transmitter

Given an average transmit power constraint, the channel
capacity Copra in (bits/seconds) of a fading channel is given
by [12, 13]

Copra =
B

ln 2

∫ ∞

γ0

ln
(

γ

γ0

)
pγ(γ)dγ (6)

where B (in hertz) is the channel bandwidth and γ0 is the
optimum cutoff SNR satisfying [12]

∫ ∞

γ0

(
1
γ0
− 1

γ

)
pγ(γ)dγ = 1 (7)

However, Copra in (6) can be expressed in terms of cumulative
distribution function (CDF) by applying integration by-parts
resulting in

Copra ln(2)
B

= −
∫ ∞

γ0

1
γ

F (γ)dγ (8)

Substituting (2) into (7) yields the equlity

L∑

k=1

WL−1
k−1 (ρ2)
Γ(k)

(
1
γt

)k
[ ∫ ∞

γ0

γk−1

γ0
e
−γ
γt

−
∫ ∞

γ0

γk−2e
−γ
γt

]
dγ = 1 (9)

We evaluate the integrals in (9) by making the use of the
following equality [18]

Γ(n, x) =
∫ ∞

x

sn−1e−sds (10)

where Γ(., .) is the incomplete gamma function, Upon substi-
tution of (10) into (9), it is found that the optimal cutoff SNR,
γ0 has satisfy the following equality

L∑

k=1

WL−1
k−1 (ρ2)

[
γt

γ0
Γ
(

k,
γ0

γt

)
− Γ

(
k − 1,

γ0

γt

)]
= Γ(k)γk

t

To obtain the optimal cutoff SNR γ0 in (9), we follow the
following procedure. Let x = γ0

γt
and define the fMRC(x) as

fMRC = WL−1
k−1 (ρ2)

Γ
(

k, x

)

x
−WL−1

k−1 (ρ2)Γ
(

k−1, x

)
−Γ(k)γk

t

(11)
By differentiating fMRC with respect to x over the interval
]0, +∞[, gives

f
′
MRC = −WL−1

k−1 (ρ2)Γ
(

k, x

)
/x2 (12)

Hence, f
′
MRC(x) < 0 for ∀ x > 0, meaning that f

′
MRC

is strictly decreasing function of x. Observe that, from
(11) it can be observed that limx→0 fMRC = +∞ and
limx→0 fMRC = −Γ(k)γk

t Note that, fMRC is continues
function of x, which leads to a unique positive γ0 such that
fMRC(x) = 0. We thereby conclude that for each γt > 0 there
unique γ0 satisfying (11). Numerical results using MATLAB
shows that γo ∈ [0, 1] as γt increases, and γo → 1 as γt →∞.

Now, inserting (2) into (6) yields the channel capacity with
opra scheme as follows

Copra

B
=

∫ ∞

γ0

L∑

k=1

WL−1
k−1 (ρ2) ln

(
γ

γ0

)
γk−1

Γ(k)γk
t

e−
γ
γt dγ (13)

The summation in (13) is of finite order, thus, the order of
summation and integral can be inverted, it yields

Copera

B
=

L∑

k=1

WL−1
k−1 (ρ2)

∫ ∞

γ0

ln
(

γ

γ0

)
γt

(
γtγ

)k−1

Γ(k)
e−

γ
γt dγ

︸ ︷︷ ︸
I1

(14)
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The integral I1 can be evaluated using the fact from [13]
which states the following

Js(µ) =
∫ ∞

1

ts−1 ln(t)e−µtdt

=
Γ(s)
µs

{
E1(µ) +

s−1∑

k=1

1
k

Pk(µ)

}
(15)

where E1 denotes exponential integral of the first order which
is given by [18]

E1(x) =
∫ ∞

1

exγ

γ
dγ x ≥ 0 (16)

and Pk(µ) denotes the poisson distribution [18]

Pk(x) =
Γ(k, x)
Γ(k)

= e−x
k−1∑

i=0

xn

n!
(17)

Upon substituting (15) into (14) implies that the capacity
Copra per unit bandwidth (in bits/seconds/hertz) can be written
as:

Copra

B
=

[
E1

(
γ0

γt

)
+

L∑

k=1

{(
L− 1
k − 1

)
(ρ2)k−1(1− ρ2)L−k

×
k−1∑

i=1

Pi

(
γ0
γt

)

i

]}
(18)

1) Asymptotic Approximation: : We can obtain asymptotic
approximation Copra using the series representation of E1 in
[18] which is given by

E1(x) = −E − ln(x)−
+∞∑

i=1

(−x)i

i.i!
(19)

where E = 0.5772156659 is Euler-Mascheroni constant. Thus,
the asymptotic approximation C∞opra per unit bandwidth (in
bits/seconds/hertz) is expressed as:

C∞opra

B
'

[(
− E − ln

( 1
γt

)
+

γ0

γt

)
+

L∑

k=1

{(
L− 1
k − 1

)
(ρ2)k−1(1− ρ2)L−k

×
k−1∑

i=1

Pi

(
γ0
γt

)

i

]}
(20)

2) Opra Upper Bound: The capacity expression Copra can
be upper bounded by applying Jensen’s inequality to (6) as
follows:

CUP
OPRA ln

(
E{γ}

γ0

)
(21)

The expression in (21) can be evaluated by averaging it over
the PDF in (2) and making the help the identity [18]

∫ ∞

0

xne−µxdx = n!µ−n−1 (22)

for Re[µ] > 0.The resulting expression can be further
simplified to obtain the upper bound for Copera as follows

CUB
opra

B
= ln

(
L−1∑

k=0

1
γt

(
L− 1

k

)
(ρ2)k−1(1− ρ2)L−k

)
(23)

B. Constant Transmit Power

By adapting the code rate to channel fading with a constant
power, the channel capacity Cora is given by [9, 10]

Cora =
B

ln 2
=

∫ ∞

0

ln
(
1 + γ

)
pγ(γ)dγ (24)

Inserting (2) into (24), it yields

Cora =
L∑

k=1

WL−1
k−1 (ρ2)

∫ ∞

0

ln
(
1 + γ

) γk−1

Γ(k)γk
t

e
−γ
γt

︸ ︷︷ ︸
I2

dγ (25)

The integral I2 in (25) has been evaluated in terms of Poisson
distribution in closed form as stated in [13]- [14]

I2 = Pk

(−1
γt

)
E1

(
1
γt

)
+

k−1∑

i=1

Pi

(
−1
γt

)
Pk−i

(
−1
γt

)

i
(26)

Substituting (26) into (25) implies that the capacity Cora per
unit bandwidth (in bits/seconds/hertz) can be expressed as:

Cora

B
=

L∑

k=1

{(
L− 1
k − 1

)
(ρ2)k−1(1− ρ2)L−k

×
[
Pk

(−1
γt

)
E1

(
1
γt

)
+

k−1∑

i=1

Pi

(
−1
γt

)
Pk−i

(
−1
γt

)

i

]}
(27)

1) Asymptotic Approximation: : Following the same proce-
dure in III-A, the approximated C∞ora per unit bandwidth (in
bits/seconds/hertz) can be obtained as

C∞ora

B
=

L∑

k=1

{(
L− 1
k − 1

)
(ρ2)k−1(1− ρ2)L−k

×
[
Pk

(−1
γt

)[
− E − ln

(
1
γt

)
+

1
γt

]

+
k−1∑

i=1

Pi

(
−1
γt

)
Pk−i

(
−1
γt

)

i

]}
(28)

2) Ora Upper Bound: The capacity expression Copra can
be upper bounded by applying Jensen’s inequality to (6) as
follows:

CUB
opra

B
= ln

(
1+

L−1∑

k=0

1
γt

(
L− 1

k

)
(ρ2)k−1(1−ρ2)L−k

)
(29)
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Fig. 1. Capacity per unit bandwidth for a Rayleigh fading with SCD
diversity (L=3) and various values of different ρ2 under power and
rate adaptation

IV. NUMERICAL RESULTS

In this section we provide some numerical results that
illustrate the mathematical derivation of the channel capacity
per unit bandwidth as a function of average receiver SNR (γt)
in dB for two different adaptation policies with MRC over
slow Rayleigh fading with weight estimation errors. All curves
provided are obtained using the closed-form expressions (18),
(20), (23) ,(27), (28), and (29).

From the expression in (18), it can be observed that the
capacity increases along with increase of the diversity order
L at the receiver and increase of the average of received SNR
per branch γt. Figure (1) compares Copra for different values
of correlation between the channel and its estimate; namely,
ρ2 = 0.3, ρ2 = 0.5, ρ2 = 0.7, ρ2 = 0.9 and ρ2 = 1. It
can be noticed that the highest Copra that can be achieved
when ρ2 = 1. Furthermore, Copra decreases when the value of
ρ2 decreases where in this case the weight error increases. It
can be observed from Figure (18) that there is almost a 7 dB
difference in Copra between ρ2 = 1 and ρ2 = 0.3.

Furthermore, the same figure depicts both the asymptotic
approximated capacity expressed in (20) and the upper bound
expressed in (23). As can be shown that the upper bound gives
a tight approximation of the exact average capacity Copra.
In Figure 2, the exact, asymptotic, and upper bound of the
average capacity Cora are plotted against γt for different values
of ρ2 {0.3, 0.5, 0.9 and 1} when L = 3. As it can be observed
from Figure 2 that the difference in the capacity of ora
between ρ2 = 1 and ρ2 = 0.3 is increasing along with increase
of the average of received SNR per branch γt which makes it
more sensitive to the estimation errors than opra policy.

V. CONCLUSION

The channel capacity for unit bandwidth for two adaptive
schemes including their approximations and upper bounds over
a slow Rayleigh fading channel for MRC with estimation error
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Fig. 2. Capacity per unit bandwidth for a Rayleigh fading with MRC
diversity (L=3) and various values of different ρ2 under constant
power and rate adaptation

is discussed. Closed-form expressions including the exact,
asymptotic, and upper bound of the average capacity for opra
and ora policies are derived for L-selection combiner. Our
numerical results showed that for the same bandwidth, the
capacity increases with increase of the diversity order L and
increase of of the average γt per branch. Also, simulation
showed that opra outperforms ora, and less sensitive to the
estimation error.
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