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Abstract— This paper studies the effect of Multiple access in-
terference (MAI) on the performance of coded FHSS systems.
This is achieved by modelling the physical channel in these net-
works as a block fading channel with the hopping rate as a net-
work parameter. From this, error performance of convolution-
ally coded FHSS systems is derived by finding the exact interfer-
ence statistics and averaging over it.

I. INTRODUCTION

A serious challenge to having good communication qual-
ity in wireless networks is the time-varying multipath fading
environments, which causes the received signal-to-noise ratio
(SNR) to vary randomly. One solution to fading is the use of
spread spectrum (SS) techniques, which randomizes the fad-
ing effect over a wide frequency band. The main types of SS
are the direct sequence SS (DSSS) and the frequency hopping
SS (FHSS).

In FHSS, each user starts transmitting his data over a nar-
rowband during a time slot (called dwell time), and then hops
to other bands in the subsequent time slots according to a
pseudo-random (PN) code (sequence) assigned to the user.
The main advantages of FHSS is the robust performance under
multipath fading, interference and jamming conditions. Fur-
thermore, data sent over a jammed frequency can be easily
corrected by employing error correcting codes with FHSS sys-
tems [1]. In particular, convolutional codes are considered to
be practical for short-delay applications because the perfor-
mance is not affected significantly by the frame size.

In cellular networks, multiple access interference (MAI)
may arise when more than one user transmit over the same
frequency band at the same time in the uplink. This happens
when users in closely located cells are assigned PN codes that
are not perfectly orthogonal. Also, MAI may be caused by the
lake of synchronization between users transmitting in the same
cell [2,3]. The performance of channel coding with fast FHSS
and partial-band interference is well studied in the literature
as in [4–6]. However, no much work was done to investigate
the performance of coding with slow FHSS and partial-band
interference. The error performance of coded systems was de-
rived [7] for the case of block fading channels with a small
number of hops not exceeding J = 4. Applying this method
for systems with a large number of hops (as is the case for

FHSS systems at hand) results in a prohibitive computational
complexity due to the J-dimensional integration used in the
method.

In this paper, we derive new union bounds on the bit error
probability of coded FHSS systems under MAI. We consider
systems with perfect channel estimation over Nakagami fad-
ing channels. We accomplish this by modelling the FHSS ef-
fective channel as a block interference channel as in [8]. The
error probability is derived by conditioning over the number
of interfering users in the network and then by averaging over
this number.

The outline of the paper is as follows. The system model
is described next. In Section III, a union bound on the bit
error probability for coded FHSS systems is derived. Results
are discussed in Section IV and conclusions are presented in
Section V.

II. SYSTEM MODEL

The transmitter consists of a binary encoder (e.g., convolu-
tional or turbo), an interleaver, a modulator and a FHSS trans-
mission scheme. A packet is composed of K information bit
encoded into N bits using a rate-Rc = K/N convolutional
code. Each coded bit is modulated using coherent BPSK. Each
packet is transmitted using FHSS after being bit-interleaved,
where the transmitter hops J times during the transmission
of a packet. Thus the packet undergoes J independent fad-
ing realizations, where blocks of m = �N

J � bits undergo the
same fading. Effectively, each packet undergoes a block fad-
ing channel [8].

In this paper, only slow FHSS is considered, where the num-
ber of symbols transmitted during each hop is m = �N

J � sym-
bols, and is referred to as the hop length. Thus each frame un-
dergoes J independent fading blocks. Furthermore, we con-
sider a multiple-access FHSS network of K users. The fre-
quency band is divided into Q bands and users transmit their
data by hopping from one band to another randomly. Through-
out this paper, we assume synchronous transmission with the
probability of a hit given by ph = 1/Q. Given that only k
users (among the total of K users operating in the network)
interfere with the user of interest, the matched filter sampled
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output at time l in the jth hop is given by

yj,l =
√

Eshjsj,l + zj,l +
k∑

f=1

√
EIhf , (1)

where Es is the average received energy, sf,l = (−1)cf,l ,
where cf,l is the corresponding coded bit out of the channel
encoder, and zf,l is a zero-mean AWGN sample a with vari-
ance N0

2 . The coefficient hj is the channel gain in hop j mod-
eled as CN (0, 1) and written as hj = aj exp(jθj), where θj

is uniformly distributed and aj is the channel amplitude dis-
tributed according to Nakagami distribution. The term EI is
the average received energy for each of interfering user and
hf is the channel gain affecting the f th interfering user and
modeled as CN (0, 1).

We define the signal-to-interference ratio (SIR) as the ratio
Δ = Es/EI . The SIR indicates the relative received energy
of each of the interfering signals to the received energy of the
desired signal. The average signal-to-interference-and-noise
ratio (SINR) given k interfering users is defined as

Γ(k) =
Es

N0/2 + kEI
=

Rcγb

1/2 + k γb

Δ

, (2)

where Δ = Es

EI
is the average SIR defined above and γb =

Es

RcN0
is the SNR per information bit.

Given that k users are interfering with the user of inter-
est, the instantaneous signal-to-interference-and-noise ratio
(SINR) in the jth hop is written as

βj =
a2

jγb

1/2 + γb

Δ

∑k
f=1 a2

f

, (3)

where af is the fading gain of the signal arriving from the
f th interfering user. In (3), we assumed that the desired and
interfering signals have the different average received energies
related by the constant Δ. As the value of Δ increases the
performance improves since the interfering energy decreases
relative to the energy of the desired user.

III. BIT ERROR PROBABILITY

Throughout the paper, the subscripts c, u and b are used to
denote conditional, unconditional and bit error probabilities,
respectively. For linear convolutional codes with r input bits,
the bit error probability is upper bounded [9] as

Pb ≤ 1
r

N∑
d=dmin

wdPu(d), (4)

where dmin is the minimum distance of the code, Pu(d) is the
unconditional pairwise error probability (PEP), and wd is the
number of codewords with output weight d.

In FHSS systems, Pu(d) in (4) is a function of the distri-
bution of the d nonzero bits over the J hops. This distribu-
tion is quantified assuming uniform channel interleaving of

the coded bits over the hops [10]. Denote the number of hops
with weight v by jv and define w = min(m, d), then the hops
are distributed according to the pattern j = {jv}w

v=0 if

J =
w∑

v=0

jv, d =
w∑

v=1

vjv. (5)

Denote by L = J − j0 the number of hops with nonzero
weights. Then Pu(d), determined by averaging over all possi-
ble block patterns, is given by

Pu(d) =
d∑

L=�d/m�

L1∑
j1=0

L2∑
j2=0

. . .

Lw∑
jw=0

Pu(d|j)p(j|d), (6)

where

Lv = min

{
L −

v−1∑
r=1

jr,
d − ∑v−1

r=1 rjr

v

}
, 1 ≤ v ≤ w.

(7)

The probability of a block pattern for a specific codeword
weight d is computed using combinatorics as

p(j|d) =

(
m
1

)j1(m
2

)j2
. . .

(
m
w

)jw(
mJ
d

) .
J !

j0!j1! . . . jw!
. (8)

Substituting (6)-(8) in (4), results in the union bound on the
bit error probability of convolutional coded FHSS systems.

Conditioning on the number of interfering users and the fad-
ing, the conditional PEP for coherent detection is given by

Pc(d|j, k) = Q

⎛
⎝

√√√√Rcγb

∑w
v=1 v

∑jv

i=1 a2
i

1/2 + γb

Δ

∑k
f=1 a2

f

⎞
⎠

= Q

⎛
⎝

√√√√ w∑
v=1

v

jv∑
i=1

β2
i

⎞
⎠ , (9)

where βi is the SINR defined in (3). An exact expression of
the PEP is found using the integral form of the Q-function
resulting in

Pu(d|j) =
1
π

∫ π
2

0

E{β}

[
exp

(
−αθ

w∑
v=1

v

jv∑
i=1

βi

)]
dθ

=
1
π

∫ π
2

0

w∏
v=1

[Φβ (vαθ)]
jv dθ, (10)

where αθ = β/ sin2 θ and

Φβ (s) = Eβ

[
e−sβ

]
, (11)

is the moment generating function (MGF) of the random vari-
able β and the product in (10) results from the independence
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Fig. 1. Performance of a rate- 1
2

(23,35) convolutionally coded FHSS system
for 10 users (K = 10) and different hop lengths m = 1, 8, 16, 32, 64 (solid:
approximation using the union bound, dash: simulation).

of the fading processes affecting different hops in a codeword.

In order to find the MGF of β, we need to derive its pdf
which is a function of the number of interfering users. The
conditional pdf of the SINR given the number of interfering
users is k for integer values of the Nakagami parameter M
[11] is found to be

fβ|k(β) =
MM(1+k)βM−1e−Mβ

Γ(M)Γ(kM)

×
M∑

h=0

(
M

h

)
Γ(kM + h)

(Mβ + M)kM+h
, β > 0. (12)

Since the users collide with probability ph and the total num-
ber of users is K, the number of interfering users is a Binomial
random variable with parameters ph and K. Hence, the MGF
of the SINR, β is found by averaging (12) over the number of
interfering users as follows

Φβ(s) =
K∑

k=0

(
K

k

)
pk

h(1 − ph)K−kΦβ|k(s), (13)

where Φβ|k(s) is the conditional MGF of the SINR, β. For
integer Nakagami parameter μ [11], it is given by

Φβ|k(s) =
μμ

Γ(kμ)

μ∑
h=0

(
μ

h

)
Γ(kμ + h)

μh

×U
(
μ;μ(1 − k) − h + 1; 1 +

μ

s

)
, (14)

where U(.; .; .) is the confluent hypergeometric function of
the second kind defined in [12]. The MGF required to eval-
uate (10) is found by substituting (14) in (13) and expressing
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Fig. 2. Performance of a convolutionally coded FHSS system over Rayleigh
fading for different number of users K and SIR = 5 dB, (solid: m = 1,
dashed: m = 64).

U(.; .; .) as

U(a; b;x) =
π

sin(πb)

[
1F1(a, b;x)

Γ(a − b + 1)Γ(b)

− x1−b

Γ(a)Γ(2 − b) 1F1(a− b + 1, 2− b;x)
]
, (15)

where 1F1(., .; .) is the confluent hypergeometric function
that is available in any numerical package such as MATLAB.
Once the MGF is evaluated, the PEP is evaluated by substi-
tuting (13) in (10). Note that due to the summation in (6),
the union bound in (4) becomes complicated when d is large.
Thus an approximation to the bit error probability is obtained
by truncating (4) to a distance dmax.

IV. RESULTS AND DISCUSSION

Throughout this subsection, the proposed performance
analysis is applied to coded FHSS systems employing a rate- 1

2
(23,35) convolutional code with a frame size of N = 2 × 512
coded bits. Figure 1 shows the performance of a FHSS net-
work with 10 users and perfect CSI for different hop lengths.
We observe that the obtained analytical results closely approx-
imate the simulation results. Thus the proposed analytical ap-
proach provides an accurate measure of the performance of
coded systems over systems that can be modeled by a block
fading channel model. In the rest of the paper, only analyti-
cal results are shown in order to make the presentation of the
results clear.

Figure 2 shows the performance of a convolutionally coded
FHSS system over Rayleigh fading with perfect CSI for differ-
ent number of users and hop lengths of m = 1 and m = 64.
Comparing the sets of curves corresponding to the cases of
m = 1 and m = 16, we observe that the performance loss
due to interference increases as the hop length increases (or in
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Fig. 3. Performance of a convolutionally coded FHSS system over Rayleigh
fading for different hop lengths m and SIR = 5 dB, (solid: K = 1, dashed:
K = 40).
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Fig. 4. SINR required for a convolutionally coded FHSS system to achieve
Pb = 10−5 over Rayleigh fading versus the number of users K for m =
1, 8, 16, 32, 64, 128 and SIR = 5 dB.

other words as the number of hops decreases). For example,
for the case of m = 1, 20 users is worse than 1 user by almost
0.5 dB, whereas this difference is almost 1 dB for the case
of m = 64. This is also clear in Figure 3, which shows the
performance of the coded FHSS system over Rayleigh fading
with perfect CSI for different hop lengths m and for one and
40 users. The reason behind this phenomenon is that increas-
ing the hop length decreases the diversity order provided to
the coded system, which increases the impact of interference
on the performance of the system.

Figure 4 shows the SINR required for the coded FHSS sys-
tem to achieve Pb = 10−5 over Rayleigh fading versus the
number of users K with perfect CSI for different hop lengths.
In the figure we observe that as the hop length increases the
required SINR increases up to a maximum number of users

beyond which the required performance can not be achieved.
For example, a coded FHSS system with m = 64 can achieve
a Pb = 10−5 with a SINR of 12 when only 10 users exists in
the system. However, it can not achieve the same performance
whatsoever if the number of users in the system exceeds 40
users. Therefore, if more than 40 users need to be supported
at a Pb = 10−5, then the hop length has to be decreased, i.e.,
the number of hops per frame has to be increased to increase
the diversity order in the coded system.

V. CONCLUSIONS

In this work we derived a union bound approximation of the
performance of coded FHSS systems under MAI conditions.
Results show that the performance loss due to interference in-
creases as the hop length increases (or in other words as the
number of hops in FHSS systems decreases). Furthermore,
this performance loss increases more as the number of users
increases.
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