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Abstract— In this paper a union bound on the bit
error probability of bit-interleaved space-time (BI-
ST) coded systems is derived. The derivation is based
on the uniform interleaving assumption of the coded
sequence prior to transmission over the multiple an-
tennas. The performance of a BI-ST coded system is a
function of how the bit errors are distributed over the
signals in the codeword. In this paper, we derive this
distribution as well as the corresponding pairwise
error probability. The bound is a function of the
distance spectrum of the code, the signal constellation
used and the space-time (ST) encoding scheme. The
bound is derived for a general BI-ST coded system
and applied to two specific examples; namely, the BI
space-time coded modulation (BI-STCM) and the BI
space-time block codes (BI-STBC). Results show that
the analysis provides a close approximation to the
performance for a wide range of signal-to-noise ratios
(SNR).

I. INTRODUCTION

One standard approach to mitigate fading and
achieve bandwidth efficiency is transmit diversity in
which multiple antennas are used at the transmitter.
Simple and elegant space-time block codes (STBC)
were proposed in [1], [2] to provide diversity at the
transmitter. Coded modulation [3] is an efficient tech-
nique that provides high transmission rates at good
quality by combining error control coding and modula-
tion. The basic idea in coded modulation is to partition
the signal space into signal subsets and use coding
to maximize a distance measure between the coded
signals. In perfectly-interleaved fading channels the
symbol-wise Hamming distance between signals in
different subsets has to be maximized by the code
designer. This Hamming distance can be increased by
interleaving the coded bits prior to mapping them onto
the signal constellation [4], [5]. This method is referred
to as bit-interleaved coded modulation (BICM). BICM
was applied to multi-input multi-output (MIMO) sys-
tems in [6], [7], in which the coded bits are bit-

interleaved and each group of bits are mapped onto
signals that are transmitted over multiple transmit
antennas. Two approaches to mapping the coded bits
onto the signals are considered in this paper; namely,
the BI ST block code (BI-STBC) [8] and the BI ST
coded modulation (BI-STCM) [9], [10].

The original motivation behind proposing ST coded
systems is to provide diversity to systems operating in
quasi-static fading environments. However, it is also
of interest to study the performance of ST systems
over rapidly varying fading channels. For example,
multiple antennas can be used at base stations to
provide receive diversity to the uplink as well as
transmit diversity to the downlink. When the speed of
a mobile unit increases, the fading between the base
station and the mobile unit becomes rapidly varying
and can not be modeled as a quasi-static fading chan-
nel. In delay-tolerant applications, interleaving with
large depth can be used to imitate the fully-interleaved
channels, which results in almost uncorrelated fading
attenuations of neighboring symbols within a code-
word. Therefore it is of great interest to analyze the
performance of ST coded systems over rapidly varying
fading channels.

Because of the interleaver used in the transmit-
ter, each signal vector (transmitted over the multiple
transmit antennas) is composed of coded bits that
are randomly located in the coded sequence (from the
decoder point-of-view). Thus a symbol error of the
modulation mostly will not cause consecutive bit errors
in the codeword, which enhances the performance dra-
matically. However, the random nature of distributing
the error bits over different symbols causes the perfor-
mance analysis to be difficult. A union bound on the
bit error probability of BICM systems was presented in
[5], [11]. The bound was based on the assumption that
every symbol error causes only one bit error among
the bits associated with the symbol. However, due to
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the interleaving used, symbol errors result in multiple
bit errors that are randomly distributed over the coded
sequence. This fact was used in [12] to derive a union
bound for BICM. For quasistatic fading environments,
union bounds for BI-STBC and BI-STCM were derived
in [8] and [9], respectively.

In this paper we derive a union bound on the bit
error probability of general BI-ST coded systems over
rapid fading channels. Both BI-STBC and BI-STCM
systems are considered as specific examples. The new
bound is based on the uniform (random) interleaving of
the coded bits prior to mapping them onto modulation
symbols that are transmitted over the transmit an-
tennas. The distribution of the error bits in a received
vector is derived and the corresponding pairwise error
probability is evaluated. Simulation results show that
the proposed bound is tight for different signal constel-
lations, ST coding schemes and channel models.

The outline of the paper is as follows. The model
for BI-ST coded system is described in Section II. In
Section III, the proposed union bound is derived. The
characteristic function required to evaluate the union
bound is derived for the BI-STCM and BI-STBC sys-
tems in Section IV. Analytical and simulation results
are presented in Section V. Conclusions are discussed
in Section VI.

II. SYSTEM MODEL

Consider the BI-ST coded system shown in Figure
1. The encoder receives an information block u of K
bits and generates an N -bit codeword c resulting in a
code rate Rc = K

N . After encoding, the codeword c is
bit interleaved to generate the interleaved codeword
π(c) = (b1,b2, · · · ,bL) that consists of L blocks each
of qm bits. Each of the L blocks is referred to as a
ST block (STB). Note that N = qmL. The STB bl

is mapped onto q symbols (sl,1, sl,2, · · · , sl,q) by a ST
mapper. Each of the q symbols are drawn from an M -
ary complex signal constellation that consists of M =
2m signal points with average symbol energy equal to
Es. Every q symbols are mapped by the ST encoder
into p column vectors of length nT for transmission by
nT transmit antennas.

The ST code is characterized by an nT × p transmis-
sion matrix, where p = 1 or an integer that satisfies
p ≥ nT . In the case of p = 1, the system is called
the ST coded modulation (STCM) [13], whereas the
case of p ≥ nT results in the well-known ST block
code (STBC) [1] as will be clarified in the examples
presented below. The rows of the transmission matrix
consists of entries that are linear combinations of
sl,1, sl,2, · · · , sl,q and s∗l,1, s

∗
l,2, · · · , s∗l,q. Denote the trans-

mission matrix by xl = [ xl,1
T ,xl,2

T , · · · ,xl,p
T ], where

{xl,t
T } are column vectors of dimension nT × 1. The

ST encoder maps the vector (sl,1, sl,2, · · · , sl,q) onto the
column vectors xl,1

T ,xl,2
T , · · · ,xl,p

T , and the vectors
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Fig. 1. Block diagram of the general BI-ST coded system.

{xl,t
T } are transmitted by nT antennas one at a time

over p transmission intervals. The p transmission in-
tervals constitute one STB. The code rate of the ST
encoder is Rs = qm

p , and the overall rate of the BI-
ST coded system is R = RsRc = qmK

pN . In the case of
STBC, i.e., p ≥ nT , the rows of transmission matrix
are constructed to be orthogonal in order to enable a
linear-complexity receiver [1]. Specific examples of ST
codes are presented below.

Example 1: When p = 1 and q = nT , the resulting
system is a STCM system. In STCM, every nT sym-
bols are transmitted over the nT transmit antennas
during one symbol duration. In this case the fading
processes affecting consecutive symbols are assumed
to be independent.

Example 2: When p = q = nT = 2, the resulting
system is the Alamouti STBC. The Alamouti STBC is
characterized by the 2×2 complex matrix xl presented
in [1]. In this case the fading process should stay
constant for at least two symbols to enable simple
detection. This is a full-rate STBC.

In general, the receiver is assumed to have nR

antennas. However, in order to simplify notation we
derive the results for systems with a single receive
antenna. Note that all the results are easily general-
ized to multiple-receive antennas and the result will
be summarized separately later. The channel from the
nT transmit antennas to the receive antenna is repre-
sented by an 1×nT channel vector. The fading channel
is assumed to be constant during one STB to enable
low-complexity receivers for the STBC case [1]. The
channel vector of the tth transmission interval in the
lth STB is denoted by hl,t = (h1

l,t, h
2
l,t, · · · , hnT

l,t ), where
hi

l,t denotes the fading attenuation of the channel from
the ith transmit antenna to the receive antenna in the
lth STB. The fading channels from different transmit
antennas are assumed to be independent and identi-
cally distributed (i.i.d.) Rayleigh random variables.

The received signal vector corresponding to a code-
word c is denoted as r = (r1, r2, · · · , rL) where rl =
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(rl,1, rl,2, · · · , rl,p) and

rl,t = hl,txl,t
T + nl,t, (1)

where nl,t is a length-p AWGN vector at the receiver
during the tth transmission period in the lth STB mod-
eled as CN (0p, N0Ip), where Ip denotes the p×p identity
matrix and 0p is the 1 × p zero matrix. The receiver
is assumed to have perfect channel state information
(CSI) and the decoding is done by minimizing the
decision metric

L∑
l=1

p∑
t=1

||rl,t − hl,txl,t
T ||2, (2)

which can be closely achieved via iterative ST detec-
tion and decoding [14]. Since the design of iterative de-
tection and decoding is beyond the scope of this paper,
the reader is referred to [14] for further information.
Note that when multiple-receive antennas are used
at the receiver, the decision metric in (2) is replaced
by the corresponding maximal-ratio combining (MRC)
metric.

III. THE UNION BOUND

For the sake of analysis, we make the uniform
interleaving assumption, i.e., if we feed a codeword c
with a Hamming weight d to the interleaver, then the
output could be any weight-d bit sequence of length N
with an equal probability given by 1

(N
d) . The bit error

probability for a convolutional code is upper bounded
[15] by

Pb �
N∑

d=dmin

K∑
j=1

j

K
wj,d Pu(d), (3)

where dmin is the minimum Hamming distance of the
convolutional code, wj,d denotes the number of convo-
lutional codewords with input Hamming weight j and
total weight d, and Pu(d) is the pairwise error proba-
bility defined as the probability of decoding a received
sequence as a weight-d codeword ĉ given that the code-
word c was transmitted, i.e., the Hamming distance is
dH(c, ĉ) = d. Throughout the paper, for any variable
defined for c, the corresponding variable defined for
ĉ is denoted by using ” ˆ ”. The subscripts c, u and b
are used to denote conditional, unconditional and bit
error probabilities, respectively. Clearly Pu(d) depends
on the squared Euclidean distance d2

E � [ dE(c, ĉ) ]2

between the received sequences corresponding to the
codewords c and ĉ, which is a function of the distri-
bution of the d nonzero bits over the L STBs in the
codeword. Using the integral expression [16] of the Q-
function, Q(x) = 1

π

∫ π
2

0
e(−x2/2 sin2 θ)dθ, we have

Pu(d) = Ed2
E |d

[
Q

(√
Rγb

2
· d2

E

)]

=
1
π

∫ π
2

0

Ψd2
E |d

(
Rγb

4 sin2 θ

)
dθ, (4)

where γb = Eb

N0
is the signal-to-noise ratio (SNR)

per information bit and Ψd2
E |d(z) � Ed2

E |d
[
e−zd2

E

]
is

the conditional characteristic function of the random
variable d2

E given d.

Since the combination of the signal constellation
mapping with the ST encoding may not have a sym-
metric structure for all codewords, the Euclidean dis-
tance dE(c, ĉ) may not be the same for different choices
of c and ĉ even if the Hamming distance dH(c, ĉ) is
fixed at d. Hence we have to take the expectation
in (4) with respect to the distribution of d2

E given d.
Thus the task is to find the conditional distribution
of d2

E given d. Denote the error vector between two
codewords π(c) and π(ĉ) by e(c, ĉ) = ( e1, e2, · · · , eL ),
where el = (el,1, el,2, · · · , el,p) and el,t = xl,t − x̂l,t. The
squared Euclidean distance d2

E can be expressed as

d2
E =

L∑
l=1

p∑
t=1

||hl,tel,t
T ||2 =

L∑
l=1

d2
l , (5)

where d2
l =

∑p
t=1 ||hl,tel,t

T ||2 is the squared Euclidean
distance between the received signal vectors associ-
ated with the lth STB, bl. Since the total number of
bit errors in the codeword is d, the distribution of d2

l

depends on how many bit errors exist in the STB bl.
Thus it is necessary to find the conditional distribution
of d2

l given fl, where fl denotes the number of bit errors
in bl. Due to the uniform interleaving and the indepen-
dent fading assumptions, the conditional distributions
of {d2

l |fl} are identical and the characteristic function
of d2

E given d can be obtained as

Ψd2
E |d(z) = Ef1,··· ,fL

[
L∏

l=1

Ψd2
l |fl

(z)

]

= Ej1,··· ,jw

[
w∏

v=1

[φv(z) ]jv

]
, (6)

where jv denotes the number of STB’s with v bit errors,
w = min{d, qm} and φv(z) is given by

φv(z) � Ψd2
l |fl

(z|fl = v) = Ed2
l |fl

[
e−zd2

l |fl = v
]
. (7)

Clearly, the form of φv(z) depends on the fading dis-
tribution, which will be derived in Section IV. Since
dH(c, ĉ) = d, the components of the vector j =
{j0, j1, ..., jw} are constrained by the conditions

L =
w∑

v=0

jv, d =
w∑

v=1

vjv. (8)

The joint pdf of j given d can be derived using combi-
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natorics as

p(j|d) =

(
qm
1

)j1(qm
2

)j2
. . .
(
qm
w

)jw(
N
d

) · L!
j1!j2! . . . jw!

. (9)

The left factor of p(j|d) in (9) is the probability of
distributing d nonzero bits over L error vectors with jv

error vectors having v bits for possible values of v. The
right term of p(j|d) is the number of combinations of
j = {jv}w

v=0 among the L error vectors. The expectation
in (6) is computed as

Ψd2
E |d(z) =

Lw∑
jw=0

Lw−1∑
jw−1=0

. . .

L1∑
j1=0

(
p(j|d)

w∏
v=1

[ φv(z) ]jv

)
,

(10)
where

Lv = max
{

0,

⌊
d −∑v

r=v+1 rjr

v

⌋}
, 1 ≤ v ≤ w. (11)

Substituting (7)-(11) into (4) results in the final form
of the unconditional pairwise error probability. The
rest of the paper is devoted to deriving expressions of
the characteristic function φv(z) for BI-STCM (p = 1)
and BI-STBC (p ≥ nT ) systems with different fading
statistics.

IV. THE CHARACTERISTIC FUNCTION

A. BI-STCM

In BI-STCM systems, p = 1 and q = nT , and thus we
use the notations el = el,1 and hl = hl,1. In this case,
the distance is given by d2

l = |hlel
T |2. Going through

the derivation in [13], the distance d2
l simplifies to

d2
l = ||el||2 · |βl(el)|2, (12)

where

βl(e) � hl eT

||e|| , (13)

is a random variable whose distribution depends on
the fading distribution which will be derived later.
This implies that {βl(el)} are independent random
variables. Given a realization of the error vector el,
the conditional characteristic function of d2

l given el

becomes
Ψd2

l |el
(z) = Ψ|βl(el)|2

(
z||el||2

)
. (14)

To find φv(z) = Ψd2
l |fl

(z), we first consider all
(
qm
2

)
possible STB combinations of bl and b̂l. For each
pair, we feed them to the STBC encoder to find the
corresponding xl, x̂l, and the error vector el. Classify
these STB pairs into groups according to dH(bl, b̂l).
Suppose in the group of dH(bl, b̂l) = v bits, the STB
pairs of the group generates error vectors ev,1, ev,2, · · ·
each with multiplicity µv,1, µv,2, · · · , respectively. Then
the conditional joint pdf of el given fl can be written

as
pel|fl

(e|v) =
∑

k

χv,k ∆(e − ev,k), (15)

where χv,k = µv,k∑
k µv,k

is the probability for an error
vector ev,k to occur, and ∆(e) � 1 if e = 0; and 0
otherwise. By (14) and (15), we have

φv(z) = Ψd2
l |fl

(z) =
∑

k

χv,k Ψ|βl(ev,k)|2
(
z||ev,k||2

)
. (16)

Clearly, the form of Ψ|βl(ev,k)|2(z) is a function of the
fading distribution. For the case of Rayleigh fading,
φv(z) is given by

φv(z) = Ψd2
l |fl

(z) =
∑

k

χv,k

1 + z||ev,k||2 . (17)

B. BI-STBC

In BI-STBC systems the fading gain of each channel
remains constant during each STB, i.e., hl,1 = hl,2 =
· · · = hl,p = hl = {hi

l}. Recall that el,t is a vector of di-
mension 1×nT and denoted by el,t = (e1

l,t, e
2
l,t, · · · , enT

l,t ).
Due to the orthorgonality of the row vectors of STBC
transmission matrix, we have

d2
l =

p∑
t=1

||hl el,t
T ||2 =

nT∑
i=1

|hi|2 · ξi
l ,

where ξi
l =

∑p
t=1 |ei

l,t|2. Since {hi
l} are i.i.d. random

variables, then the random variables {|hi
l|2} are also

i.i.d. with a characteristic function given by Ψ|h|2(z).
Since {|hi

l|2} are independent, we can obtain the char-
acteristic function of d2

l given e′l given a realization of
e′l = (ξ1

l , ξ2
l , · · · , ξnT

l ) as

Ψd2
l |e′

l
(z) =

nT∏
i=1

Ψ|h|2
(
z ξi

l

)
. (18)

Again we feed all
(
qm
2

)
possible STB pairs of bl and b̂l

to the ST encoder to get the vector e′l. Using a similar
approach of finding (15) in Section IV-A, we can obtain
the conditional joint pdf of e′l given fl

p(e′l|fl = v) =
∑

k

χ′
v,k ∆(e − e′v,k). (19)

Denote the ith component of e′v,k by e′v,k(i). By (18) and
(19), we have

φv(z) = Ψd2
l |fl

(z) =
∑

k

χ′
v,k

nT∏
i=1

Ψ|h|2
(
z e′v,k(i)

)
. (20)

Clearly, Ψ|h|2(z) depends on the fading distribution of
the channel. If |h| is a Rayleigh distributed random
variable, we have

φv(z) =
∑

k

χ′
v,k

[
nT∏
i=1

1
1 + z e′f,v(i)

]
. (21)
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Fig. 2. Bit error probability of convolutionally encoded BI-ST
systems using nT = 2 over a Rayleigh fading channel.

V. NUMERICAL RESULTS

As an illustrative example, we use BI-ST coded sys-
tems employing a rate- 1

2 (5,7) convolutional code with
two transmit antennas, i.e., nT = 2. Throughout the
results, the interleaver size is set to N = 1024 coded
bits. It is expected that increasing the interleaver size
improves the performance. However, due to the space
limitation this point is not addressed in this paper.
The modulation techniques used are quadrature-phase
shift keying (QPSK) and quadrature-amplitude modu-
lation 16-QAM. Note that the derivation above applies
to any signal constellation. The throughputs of the
BI-STBC and BI-STCM systems are mRc and mnT Rc

bits/s/Hz, respectively.
The performance of BI-STBC and BI-STCM over

Rayleigh fading channels is shown in Figure 2. We
observe that the bound is tight to simulation curves
at medium-to-high SNR values. Note that the union
bound becomes loose for SNR values lower than the
cutoff rate of the system [15]. We observe that the
performance of BI-STBC is better than that of the BI-
STCM. This is because the throughput of BI-STCM is
nT time larger than that of BI-STBC. Furthermore,
in BI-STBC there are nT observations available to
detect the transmitted nT signals, whereas it is only
one observation in BI-STCM. Note that the slope of
the error probability curves achieved by BI-STBC is
larger than that achieved by BI-STCM. This indicates
that the time diversity of BI-STBC is larger than that
of BI-STCM.

VI. CONCLUSIONS

In this paper we derived a union bound on the bit
error probability of BI-ST coded systems over rapidly

varying fading channels. The derivation is based on
the uniform interleaving of coded bits prior to the ST
mapping and encoding. The bound is a function of
the distance spectrum of the channel code, the signal
constellation and the ST encoding scheme. Results
show that the proposed bound is tight in medium to
high SNR regions.

VII. ACKNOWLEDGEMENTS

The first author would like to acknowledge the sup-
port provided by KFUPM to conduct this work.

REFERENCES

[1] S. Alamouti, “A Simple Transmit Diversity Technique for
Wireless Communications,” IEEE Journal on Selected Areas
in Communications, vol. 16, pp. 1451–1458, October 1998.

[2] V. Tarokh, H. Jafarkhani, and A. Calderbank, “Space-Time
Block Codes from Orthogonal Designs,” IEEE Transactions on
Information Theory, vol. 45, pp. 1456–1467, July 1999.

[3] G. Ungerboeck, “Channel Coding With Multilevel/Phase Sig-
nals,” IEEE Transactions on Information Theory, vol. 28, pp.
55–67, January 1982.

[4] E. Zehavi, “8-PSK Trellis Codes for A Rayleigh Channel,” IEEE
Transactions on Communications, vol. 40, pp. 873–884, May
1992.

[5] G. Caire, G. Taricco, and E. Biglieri, “Bit-Interleaved Coded
Modulation,” IEEE Transactions on Information Theory, vol.
44, pp. 927–946, May 1998.

[6] A. Tonello, “Space-Time Bit-Interleaved Coded Modulation
with Iterative Decoding Strategy,” IEEE Vehicular Technology
Conference, VTC/Fall, pp. 473–478, 2000.

[7] L. Lampe and R. Schober, “Bit-Interleaved Coded Differential
Space-Time Modulation,” IEEE Transactions on Communica-
tions, vol. 50, pp. 1429–1439, September 2002.

[8] Y. Huang and J. Ritcey, “Tight BER Bound for Iteratively
Decoded Bit-Interleaved Space-Time Coded Modulation,” IEEE
Communications Letters, vol. 8, pp. 153–155, March 2004.

[9] H. Koo and B. Lee, “Performance Analysis for ST-BICM
System With an Arbitrary Constellation,” IEEE International
Conference on Communication, ICC, pp. 3016–3020, 2003.

[10] A. Tonello, “Performance of Space-Time Bit-Interleaved Codes
in Fading Channels with Simplified Iterative Decoding,” IEEE
International Conference on Communication, ICC, pp. 1357–
1361, 2001.

[11] A. Chindapol and J. Ritcey, “Design, Analysis, and Performance
Evaluation for BICM-ID with Square QAM Constellations in
Rayleigh Fading Channels,” IEEE Journal on Selected Areas
in Communications, vol. 19, pp. 944–957, May 2001.

[12] P. Yeh, S. Zummo, and W. Stark, “Error Probability of Bit-
Interleaved Coded Modulation (BICM) in Wireless Environ-
ments,” IEEE Transactions on Vehicular Technology, To appear
in April, 2006.

[13] V. Tarokh, N. Seshadri, and A. Calderbank, “Space-Time Codes
for High Data Rate Wireless Communication: Performance
Criterion and Code Construction,” IEEE Transactions on
Information Theory, vol. 44, pp. 744–765, March 1998.

[14] X. Li and J. Ritcey, “Bit-Interleaved Coded Modulation with
Iterative Decoding,” IEEE Communications Letters, vol. 1, pp.
169–171, November 1997.

[15] A. Viterbi and J. Omura, Principles of Digital Communication
and Coding, McGraw-Hill, New York, USA, 1st edition, 1979.

[16] M. Simon and D. Divsalar, “Some New Twists to Problems In-
volving the Gaussian Probability Integral,” IEEE Transactions
on Communications, vol. 46, pp. 200–210, February 1998.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1293




