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EE 577 - Wireless and Personal 
Communications

Chapter 7: Mitigation Techniques
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Fading Mitigation Techniques

Equalization: mitigates frequency-selective fading 
channels
Diversity: mitigates flat fading
Channel Coding: mitigates errors due to fading and 
noise, provide time diversity
Adaptive Modulation: mitigates time-selective 
fading
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Causes of ISI

Channel Distortion

Multipath Fading: Frequency selective channels 
act as an FIR filter causing channel-induced ISI

Pulse shapes not designed for zero ISI (GMSK used 
in GSM)
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Problems in FS Fading Channels
Multi-path Channel model causes ISI at receiver

As signal power S↑, ISI power ↑
Hence, S/(I+N) decreases slowly with increasing S/N, 
independent of the signal power 
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Error Floor in FS Fading Channels

(BER)

in log 
scale

SNR (dB)

Error Floor
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Equalization
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An equalizer is a filter that equalizes the effect of 
the nonideal (frequency-selective) channel
C(f) H(f) = 1 (Equalizer inverses the effect of the 
channel)
For time-varying channels the equalizer has to be 
adaptive. 
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Equalizer Modes
Training:

The equalizer must periodically learn the channel 
by transmitting a training sequence
The training sequence is used at the receiver to 
choose the equalizer parameters

Tracking:
The equalizer parameters are adjusted based on the 
difference between the equalizer output and the 
output of the decision device
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Training & Decision Modes
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Classification of Equalizers
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Classification of Equalizers
Linearity:

Linear 
Nonlinear (DFE, MLSE)

Structure:
Transversal
Lattice

Algorithm:
Zero Forcing
MMSE
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Linear Transversal Equalizer
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Lattice Implementation
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Linear Equalizer
Design C(z) or cn such that the output is as close to In
as possible
Zero-Forcing:

Forces the samples of combined channel/equalizer 
impulse response to be zero at all but one of the 
NTs spaced samples
It is an impulse in time domain:

Simple, but may enhance the noise

( ) ( ) 1F z C z =
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Linear Equalizer

Minimum Mean Square Error (MMSE):
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To estimate R and p, the transmitter can transmit a 
training sequence that is known by the receiver.
Equalizer requires periodic retraining in order to 
maintain effective ISI cancellation.
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Decision Feedback Equalizer (DFE)
DFE attempts to subtract from the current symbol the 
ISI created by previously detected symbols
It performs better than linear equalizer always
Suitable to channels with deep frequency nulls

Feedforward
Filter c-K…c0

Vn Symbol 
Detection

In̂ In
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Feedback 
Filter c1…cK
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DFE
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DFE

Consists of a feed-forward filter followed by a 
feedback filter with the bit decisions as input

DFE does not suffer from noise enhancements

Coefficients can be updated using LMS, RLS or 
MMSE algorithms
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Performance Measures
Rate of convergence:
# iterations required for the equalizer to converge 
to the correct solution

Misadjustment:
Measure of the amount of deviation from the 
correct solution

Computational complexity:
# operations required to make one iteration in the 
equalizer
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Adaptive Algorithms
Least Mean Square (LMS):
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MSE in LMS Algorithm

Step Size µ

MSE due to lag

MSE due to 
gradient noise

To
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Total MSE
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Training Algorithms Tradeoffs

LMS: 2N+1 multiply operations, low complexity, 
slow convergence, poor tracking

MMSE: N2 - N3 multiply operations, very high 
complexity, very fast convergence, good tracking

RLS: 2.5N2 + 4.5N multiply operations, high 
complexity, fast convergence, good tracking
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Maximum Likelihood Sequence 
Equalizer (MLSE)

ISI introduces some form of memory (relation 
between adjacent samples over the span of ISI)

Instead of detecting the received stream symbol-by-
symbol like in previously discussed equalizers

MLSE observes a sequence of received symbols and 
searches for the most likely transmitted sequence
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MLSE
Comparing the received sequence to all possible 
transmitted sequences is a very computational 
complex task

An efficient algorithm of finding the most likely 
sequence without the need for comprehensive search 
is known as the Viterbi Algorithm

MLSE is used in GSM 
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Fractionally-Spaced Equalizers (FSE)

In previous equalizers, taps are separated by symbol 
duration Ts

However, the pulse often extends to more than a 
symbol duration (such as in RC pulses)
In this case FSE performs better
In FSE, the taps are separated in time by the 
reciprocal of Nyquist rate (<Ts)
FSE has better performance
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Equalizer Design
Complexity has to be justified by SNR gain and battery 
savings
Coherence time should be greater than equalizer 
convergence time
Maximum number of resolvable multipath components 
in the channel dictates the number of taps in the 
equalizer
An equalizer can equalize a channel with a maximum 
delay spread less than or equal the maximum delay in 
the equalizer
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Case Study
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Study Case
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Performance of Linear Equalizers
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Performance of DFE 
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The GSM System

Slot duration = 0.577 ms
Bit duration: 3.69 µs
Carrier freq. = 900 MHz 
W = 200 kHz
Tm = 16 µs
Assumption: 
Speed 100 km/hr (55.56 m/s)
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Case Study: The GSM System
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Channel parameters:
Τc ≈ 3 ms ⇒ slowly fading 
Bc ≈ 62.5 kHz ⇒ frequency selective

Equalization is required
Observation interval = 4-6 bits

The GSM System
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EE 577 - Wireless and Personal 
Communications

Lecture 16: Diversity
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Diversity
Basic idea: send the same information over independently 
fading paths, then combine the paths
If diversity branches are uncorrelated, the probability of 
deeply faded received signal is reduced

Macro Diversity: provides a method to mitigate the effects 
of shadowing
Micro Diversity: provides a method to mitigate the effects 
of multi-path fading
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Diversity Approaches
Space Diversity: 

Using antennas spaced enough (at Tx or Rx)
Polarization Diversity:

Using antennas with different polarizations
Frequency Diversity:

Using frequency channels separated in frequency more than the 
channel coherence BW

Time Diversity:
Using time slots separated in time more than the channel coherence 
time 

Multi-path Diversity:
Utilized efficiently in CDMA using RAKE receiver
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Interleave the repeated bits over a duration 
longer than the coherence time Tc

b1 b2 b3 b1 b2 b3b1 b2 b3

time
Diversity Combining

Coherent time

Time Diversity
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Block Interleaving
Example:

If bit stream is 1 2 3 4 ….12
After block interleaving,

32 51 64

Block 1 Block 2 Block 3

Less affected by burst errors

time
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frequency
f1 f2 f2

Carrier space

Same information 
with different carriers

Send the signal over multiple carriers separated in 
frequency by more than the Coherence Bandwidth

FH-SS is a special case of frequency diversity

Frequency Diversity
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Use more than one antenna to receive the signal
The distance between two antennas should:

exceed λ/2 at MS due to large amount of scatterers
around 10λ at BS due to less number of scatterers

Very suitable for base station implementation

distance > λ/2

Antennas

BS
Receiver mobile

BS BS

Space (Antenna) Diversity

distance > 10λ
mobile
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Use the same antenna to receive the signal
Orthogonal polarizations (vertical and horizontal) are used 
to provide two diversity paths
Reflection coefficients for vertical and horizontal polarized 
waves are different
This causes orthogonally polarized waves to undergo 
uncorrelated fading 
Very suitable for fixed wireless links such as microwave 
links

Polarization Diversity
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Combining Techniques

Selection Combining (SC)
Equal Gain Combining (EGC)
Maximal Ratio Combining (MRC)
Generalized SC (GSC)

MRC, EGC and GSD require a coherent phase 
reference to co-phase the different branch 

signals
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Key idea: Monitor ALL M branches at a time 
and select the branch with highest SNR to 
receive the signal

Selection Combining 

logic

R

1 2 M

Receiver

Output best one of the M Receivers

Signal

R R

EE 577 - Dr. Salam A. Zummo 44

Selection Combining

Let the average SNR in branch i be:

The average SNR for Selection Combining is:

The incremental gain becomes extremely small for 
large value of M

∑
=

=
M

i
S i1

1γγ

γγ =i
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Monitor ONE branch at a time. 
If signal quality of monitored branch falls below a threshold, the 
receiver scans other branches for better signal quality

If threshold is large, the scanning process will be activated often
If threshold is small, no improvement in diversity combining

Scanning Diversity (Switched) 
Combining 

Receiver

1 2 M

Comparator Preset Threshold

Signal

Short-Term 
Average

Control
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Antenna switching is done at the BS
Transmitter antennas are switched instead of the receiver 
antennas

Advantage: Simplify the circuit complexity of mobile unit 
Disadvantage: It is not an optimal diversity technique 

Feedback Diversity Combining 

Transmitter

DownLink Signal

Voice in

Voice out
Diversity 
Receiver

Receiver

Voice in

Voice out

Transmitter

UpLink Signal
Feedback 
Control 
Signal

Feedback 
Control 
Signal

Base station Mobile unit
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The signal from all branches are weighted and then 
summed together

ri = ai s + ni
where s is the transmitted signal 
ni is the i-th noise process and gi’s are the weights

Maximal Ratio Combining (MRC) 

Cophase
and 
Sum

1

2

M
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Output

Adaptive 
control
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MRC
The signals from each of the M branches are co-phased 

The resultant signal is represented as:

Let the average SNR in branch i be:

The SNR can be written as:

Maximization gives:
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Advantage: Produce an output with an acceptable SNR even 
when none of the individual branches are themselves 
acceptable
Disadvantage: Channel estimation is required for each 
diversity gain

MRC 

γγ MMR =

∑
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i
iMR

1
γγThus, the SNR becomes:

The mean SNR is given be:
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Equal Gain Combining (EGC)

Similar to MRC with the weights ai’s are all equal 
to 1
No need to estimate the channel gains for each 
diversity branch
The average SNR is given by:
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Diversity SNR Gains 
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Diversity Performance 
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Generalized Selection Combining 
(GSC)

Select the L diversity branches with the largest receive 
signal level (including noise and interference) among 
the M branches
Combine the selected branches using MRC
Provides a tradeoff between SC and MRC:

Performs better than SC
Less complexity than MRC

Avoid noisy branches with small SNR values 
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RAKE Receiver
Used with DSSS systems
Provides a means to combine resolvable multipath components as diversity 
branches
The RAKE receiver works as follows:

Correlate the received signal with the PN sequence
Correlate with a delayed version of the PN sequence to capture the first 
delayed multipath finger
Repeat delay-and-correlate process until all multipath figures are 
captured
Combine the outputs of the correlators using MRC

Advantage: Takes advantage of multipath
Disadvantage: Needs several correlators
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Multi-Input Multi-Output (MIMO)
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TX power: x dB

TX power: x-3 dB

RX capacity:
6 bits/symbol

RX capacity:
6 bits/symbol

Same
Channel

Total TX power: x dB
(x-3 dB per antenna)

Combine

TX

TX

TX-1

TX-2

RX

RX

RX

RX capacity: 
12 bits/channel use

MIMO
encode

MIMO
decode

RX

RX

Enables 2-channel 
simultaneous transmission

3 dB increased sensitivity

Double
Rate=
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MIMO Gain Example 
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Capacity vs. SNR, Flat fading Channel, Open-Loop
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MIMO

H is Nt x Nr matrix
x = s H + z

Processing

ce
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Space-Time Coding
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Advantages of MIMO
Order of magnitude increased rate, range and robustness
Good cost-performance trade-off and scalability
Same bandwidth and higher rates 

=> more efficient use of spectrum
Increase downlink capacity
Combats multipath fading
Initial application in 3G WCDMA standard and 802.16 
broadband wireless
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MIMO Techniques
Open-Loop MIMO:

Multiple coded data streams across multiple parallel transmitters 
Achieve diversity gain by space-time coding and/or interference 
cancellation at the receiver
Linear increase in data rates with number of antennas

Closed-Loop MIMO:
Waterfilling to achieve higher data rates
Transmitter requires channel knowledge
Data rates and range/throughput gains
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Adaptive Modulation
Basic idea:

Measure the channel at the receiver
Feed the measurement back to the transmitter
Adapt the transmission scheme relative to the channel 
estimate to maximize the data rate, minimize transmit 
power or minimize BER

What to adapt?
Constellation size/power
Symbol time
Coding rate/scheme
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Bit Rates in IEEE 802.16a
Bit rate shifting is achieved using adaptive modulation. 
When you are near to the BS => offered high speed, 
When you are far, reliability decreases => offered lower speed.
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HSDPA Features

Adaptive Modulation and Coding
Data rate adapted to radio conditions
2 ms time basis
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Multi-User Diversity
Fast Scheduler

2 ms time basis
Round Robin, Proportional Fair or 
Max-C/I

Since users are independent with 
each other, let the users with 
good channel condition send at 
any given time Multiuser 
Diversity. 
Fairness is also an important 
attribute
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Channel Coding
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Communication System
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Basic Channel Coding Concepts
Example: Binary Repetition Codes

(3,1) code: 0 => 000, 1 => 111
(3,1) repetition code can correct single errors
Block error probability:

Gain: For a BSC with p = 10-2, PE = 3x10-4.

Cost: Expansion in bandwidth by 3 times

( )
3 32 31
2 3EP p p p
⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟ ⎜ ⎟
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Error Control Coding 
The function of the encoder is to introduce 
redundancy in the binary information sequence.
Such redundancy is used in the receiver to overcome 
the effects of noise, interference and (fading) 
encountered through the channel.

Encoding is the process of mapping k-bit information 
into a unique n-bit sequence called the “codeword”
The code rate is defined as R = k/n
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Shannon’s Channel Capacity
Shannon derived the capacity formula in 1948:

W is the bandwidth in Hz

S is the signal power in watts

N is the total noise power

The bandwidth efficiency can be found as:

)1(log2 N
SWC +=

max 2

Transmission Rate  [bits/s/Hz]
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log (1 )  [bits/s/Hz]S
N

η

η
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The average signal power:

Eb is energy per bit

k is the number of bits transmitted per symbol

T is the duration of a symbol

R = k/T is the transmission rate in bits/s

N = N0W is the total noise power

N0 is the one-sided noise power spectral density

Shannon’s Channel Capacity

max 2
0

log (1 )

b
b

b

kES RE
T

RE
N W

η
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The minimum bit energy required for reliable 
transmission (Shannon bound):

In the case of infinite bandwidth, i.e., ηmax→ 0, 

This is the minimum signal-to-noise ratio required to 
reliably transmit one bit of information 

Shannon’s Channel Capacity

max0

12 max
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η −
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N
Eb
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History of Channel Coding



38

EE 577 - Dr. Salam A. Zummo 75

Hamming Distance

The Hamming distance between two codewords ci
and cj, denoted by dH(ci,cj), is the number of 
elements at which they differ

Examples:
dH(011,000) = 2
dH(011,111) = 1
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Error Correction and Detection
Consider a code consisting of two codewords with 
Hamming distance d. How many errors can be 
detected? Corrected?

# of errors that can be detected = λ = d-1

# of errors that can be corrected  = t =

In other words, for t-error correction: d = 2t + 1

1
2

d⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
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Minimum Distance of a Code
Def.: The minimum distance of a code C is the 
minimum Hamming distance between any two 
different codewords.

A code with minimum distance dmin can correct all 
error patterns up to and including t-error patterns, 
where

dmin = 2t + 1
It may be able to correct some higher weight error 
patterns, but not all.

 ( ),    , minmin i j i jd d c ,c c c C
i j

= ∀ ∈
≠
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Linear Block Codes
A binary information vector (X) of k bits is mapped 
onto a binary vector C with n>k bits
The transformation is defined by a generator matrix 
G which is k × n matrix
The message is segmented into blocks of k bits
There are 2k codewords (one for each 2k possible 
information vectors)
A binary block code is linear if and only if the 
modulo-2 sum of two codewords is also a codeword
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Generator Matrix
Message vector: X = [xm1 xm2 xm3 …..    xmk]
Codeword vector: C = [cm1 cm2 cm3 …..    cmn]
Generator matrix of the code:

Encoding is performed by using:
Cm = Xm G
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(6,3) Linear Block Codes 
Example

Messages Codewords
000 000000
100 110100
010 011010
110 101110
001 101001
101 011101
011 110011
111 000111
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Systematic Property
A codeword is divided into two parts: 

Message (systematic) bits (k) 
Parity-check bits (n-k)

A linear block code with this structure is referred to 
as a linear systematic block code
The generator matrix for such a code is given by:

11 12 13 1

21 22 23 2

1 2 3

1 0 0
0 1 0

0 0 1

n k

n k
k

k k k kn k

... p p p ... p

... p p p ... p
G I P

: : : : : : : ... :
... p p p ... p

−

−

−

⎡ ⎤
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Encoding Example
The (7,4) linear code has the following matrix as 
generator matrix

If the message x = (1101), its corresponding 
codeword C is given by:
C = X .G

= 1 × g1 + 1 × g2 + 0 × g3 + 1 × g4

= (1101000) + (0110100) + (1010001)  = (0001101)

⎥
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Encoding Example
The following matrix G is in 
the systematic form:

The codeword C for a message X is given by: 
C = X . G
c1 = x1

c2 = x2

c3 = x3

c4 = x4

c5 = x1+ x2 + x3

c6 = x2+ x3 + x4

c7 = x1+ x2 + x4

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1101000
0110100
1110010
1010001

G
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Parity-Check Matrix
An (n-k)×n parity check matrix H has its rows 
orthogonal to all codewords generated by G
Thus, a vector C is a codeword in the code generated 
by G if and only if C × HT = 0
The matrix H is called a parity check matrix
For a generator matrix G = [Ik P] => H = [PT In-k]
For the last example: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1001011
0101110
0010111

H
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Hamming Weight & Distance
The weight of the codeword is the number of non-
zero element it contains
Hamming distance dij is a measure of the difference 
between Ci and Cj in any (n,k) block code
The smallest value of the hamming weight is called 
the “minimum distance” dmin

The error detection capability of the code is:
dmin – 1

The error correction capability of the code is:

⎥⎦
⎥

⎢⎣
⎢ − )1(
2
1

mind
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Example: (7,4) Hamming Code

No. Message Codeword  No. Message Codeword 
0 0000 0000000  8 0001 1010001 
1 1000 1101000  9 1001 0111001 
2 0100 0110100  10 0101 1100101 
3 1100 1011100  11 1101 0001101 
4 0010 1110010  12 0011 0100011 
5 1010 0011010  13 1011 1001011 
6 0110 1000110  14 0111 0010111 
7 1110 0101110  15 1111 1111111 
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Linear Block Codes

Linear code: The sum of any two codewords is a 
codeword.
Hamming codes constitute a class of single-error 
correcting codes defined as:

n = 2m-1, k = n-m, m > 2

The minimum distance of the code dmin = 3
Hamming codes are perfect codes.
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CYCLIC CODES
An (n,k) linear code C is cyclic if every cyclic shift of 
a codeword in C is also a codeword in C
If  c0     c1 c2   …. cn-2 cn-1 is a codeword, then the 
following sequences:

cn-1 c0      c1 …. cn-3 cn-2

cn-2 cn-1 c0   …. cn-4 cn-3

:     :      :             :     :
c1 c2      c3 ….  cn-1 c0 

are all valid codewords.
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Example

The (7,4) Hamming code discussed before is cyclic:
1010001 1110010 0000000 1111111
1101000 0111001
0110100 1011100
0011010 0101110
0001101 0010111
1000110 1001011
0100011 1100101
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Code Polynomial
Let  c = c0  c1 c2   ….  cn-1

The code polynomial of c is:     
c(X) = c0 + c1X+ c2 X2 + …. + cn-1 Xn-1

where the power of X corresponds to the bit
position, and the coefficients are 0’s and 1’s.

Example:
1010001 1+X2+X6

0101110 X+X3+X4+X5
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Generator Polynomial 
All code polynomials are generated from one 
polynomial, the generator polynomial, using

c(X) = a(X)g(X)

The generator polynomial completely defines the 
code

The (7,4) Hamming code can be generated from the 
generator polynomial 1+X+X3
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BCH Codes

Definition of BCH codes:
For any positive integers m (m>2) and t0 (t0 < n/2), 
there is a BCH binary code of length n = 2m - 1 
which corrects all combinations of t0 or fewer errors 
and has no more than mt0 parity-check bits.

0

0

Codeword length 2 1
Number of parity-check bits
Minimum distance 2 1

m

min

n k mt
d t

−
− ≤

≥ +
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Table of Some BCH Codes

* Octal representation with highest order at the left.
721 is 111 010 001 representing 1+X4+X6+X7+X8

n k d (designed) d (actual) g(X)*

7 4 3 3 13
15 11 3 3 23
15 7 5 5 721
15 5 7 7 2463
31 26 3 3 45
31 16 5 7 107657
31 11 7 11 5423325
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Reed-Solomon (RS) Codes
A class of non-binary BCH codes.
The codeword consists of n m-bit symbols.
The parameters of the code are related by: n-k = 2t

Example: m = 4, n = 15, k = 11,
Codeword length is 15 symbols, or 15*4 = 60 bits.
It is a double-error correcting code (t =2).
It can correct any burst of 8 or less bit errors.
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Convolutional Codes
Convolutional codes differ from block codes in:

The encoder has memory
The n-bit output codeword depends on the k-bit input 
massage and the previous input bits

Convolutional coding is suitable for long messages 
such as streaming data (e.g., voice)
The encoder consists of linear finite-state shift 
registers of K stages, 
Input bits are shifted k at a time to give n coded bits
K is called the constraint length of the code. 
The rate of the code is R = k/n.
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This code has K = 3, k = 1, n = 3, => rate = 1/3
The generator functions for the code are:

g1 = [100], g2 = [101], g3 = [111].
The generator functions can be represented either in 
octal form or by generator polynomials:

Octal form: (4, 5, 7)8

Generator polynomials:
g1(x) = 1 
g2(x) = 1 + x2

g3(x) = 1 + x + x2

Convolutional Code Example 1
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This code has K = 2, k = 2, n = 3, and a rate of 2/3
The generator functions for this code are g1 = [1011], 
g2 = [1101], g3 = [1010] and in octal form, these 
generators are: (13, 15, 12)8. 
Generator polynomials can be written as:
g1(x) =  1 + x2 + x3

g2(x) = 1 + x + x3

g3(x) = 1 + x2

Convolutional Code Example 2
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Find the state changes and the resulting output codeword sequence 
for the message m = 1 1 0 1 1 0 0. Assume that the initial contents 
of the encoder are all zero

Output sequence: C = 1 1   0 1   0 1   0 0   0 1   0 1   1 1

Encoding Example

110 00 10 0 10

100 11 10 1 10

101 11 01 1 01

001 00 11 0 11

100 11 10 1 10

101 11 01 1 01

111 00 01 0 01

--0 00 00 0 0-

Output2output1State at 
time ti+1

State at 
time ti

Register 
Content

Input bit
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Three methods to represent a 
convolutional code:

Tree diagram
Trellis diagram
State diagram

A tree diagram for the rate-1/3, 
K =3 code is shown

Convolutional Codes Representation
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• Transition due to 0

• Transition due to 1

A state diagram for the rate-1/3, K =3 code is shown:

State Diagram
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A trellis diagram for the rate-1/3, K =3 code is shown:

Trellis Diagram
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Hard Decoding:
The received symbols at the output of the demodulator are 
quantized into two levels; zero and one, and fed to the decoder

Soft Decoding: 
The received symbols at the output of the demodulator are 
unquantized value (analog value) is used and fed to the 
decoder
Yields a gain of 2 - 2.2 dB compared to hard decoding

Decoding of Convolutional Codes
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Maximum Likelihood Sequence Decoding:
A convolutional code is converted into a block code of length L by 
feeding zeros at the end of the input message to force the encoder back 
to the zero state
Find the codeword with closest Hamming distance (hard decoding) or 
Euclidean distance (soft decoding) from the possible 2L codewords.

Viterbi Algorithm:
Computes the distance between the received sequence and all the 
potential trellis paths
At each stage, keeps one “most likely” (surviving) path for each state

Decoding of Convolutional Codes
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Viterbi Decoding Example
For the convolutional encoder, assume that the 
received sequence z = 11   01   01   10   01. 

Find the input message sequence m. 

a = 00

b = 10

d = 11

c = 01

00 00 00 0000

10 1010

11 11

10

01

11

10

01

11

00

01

11 11

10

01

11

00

01

10

01

11

00

01

t1 t2 t3 t4 t5 t6
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a = 00

b = 10

2

0

t1 t2
ha=2

hb=0

a = 00

b = 10

d = 11

c = 01

2 1

0 1

2

0
t1 t2 t3

ha=3

hb=3

hc=2

hd=0
(a)

(b)

Viterbi Decoding Example
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(c)

a = 00

b = 10

d = 11

c = 01

2 1 1

2

0 1

2

0

1

2

0

1

1

0

Viterbi Decoding Example
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(d)

a = 00

b = 10

d = 11

c = 01

2

0

2

0

1

1

0

t1 t2 t3 t4
ha=3

hb=3

hc=0

hd=2

Viterbi Decoding Example

EE 577 - Dr. Salam A. Zummo 108

(e)

a = 00

b = 10

d = 11

c = 01

2

0

2

0

1 1

0

t1 t2 t3 t4

0

1

1

02

1 1

2

t5

Viterbi Decoding Example
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(f)

a = 00

b = 10

d = 11

c = 01

2

0

2

0

1

0

t1 t2 t3 t4

0

0

1 1

t5 ha=1

hb=1

hc=3

hd=2

Viterbi Decoding Example
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(g)

a = 00

b = 10

d = 11

c = 01

2

0

2

0

1

0

t1 t2 t3 t4

0

0

1 1

t5 t6
1

1

1 1

20

2

0

Viterbi Decoding Example
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(h)

ha=2

hb=2

hc=2

hd=1

a = 00

b = 10

d = 11

c = 01

2

0

0

0

t1 t2 t3 t4

0

1 1

t5 t6
1

1

0

0

Viterbi Decoding Example
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Distance Properties of Convolutional 
Codes

Convolutional codes are linear codes
The free distance of convolutional codes is 
associated with the path that starts and ends in the all 
zero state and does not return in between.
So given the all-zero transmission an error occurs 
whenever the all-zero path does not survive.
The minimum distance is found by exhaustively 
searching every path from the all-zero state to the
all-zero state.  
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a = 00

b = 10

d = 11

c = 01

0 0 0 00

1 11

2 2

1

1

2

1

1

2

0

1

2 2

1
1

2

0

1

1

1

2

0

1

t1 t2 t3 t4 t5 t6

Trellis diagram labelled with distance from the all-
zero path for the encoder

Distance Properties of Convolutional 
Codes
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Examining the pervious trellis diagram it is clear that 
the free distance of the code is 5

This means that this code can correct up to:

A more closed form expression can be obtained by 
finding the transfer function of the code

min
1 ( 1) 2           errors
2

d⎢ ⎥− =⎢ ⎥⎣ ⎦

Distance Properties of Convolutional 
Codes
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Convolutional 
Encoder  

rate (k/k+1)

Mapping to 
Constellation 

of
Order

2(k+1+k1)

an
(1)

an
(k)

cn
(k1+1
)

cn
(k+1+k

1)

cn
(k+k1
)

sn

cn
(1)

cn
(k1)

Trellis Coded Modulation (TCM)
Convolutional encoder with a signal output (instead of 
binary bits)
Encoding is done to maximize some distance criterion 
in the signal constellation
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Turbo Codes 

Achieves performance close to channel capacity 
over AWGN and flat fading channels
Information is encoded by two encoders after being 
interleaved

Information
Source

Puncturing & 
P/S

MUX

Puncturing & 
P/S

MUX to the to the 
channelchannel

InterleaverInterleaver Enc 2

Enc 1 X1

X2

X0
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Turbo Decoder
Iterative decoding is composed of:

Two soft-input soft-output decoders for codes 1 and 2

Interleaver – DeInterleaver pair
Soft information about massage bits are exchanged between 
the SISO decoders

Decoder 1Decoder 1 Decoder 2Decoder 2
Interleaver 1

DEMUXDEMUX

r0

r

(Interleaver 1)-1

r2

r1
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Coding and Interleaving

Codes designed for the AWGN channel do not work 
well in fading channels due to burst errors

This can be compensated for by using standard 
AWGN channel combined with an interleaver to 
spread burst errors at the decoder
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Coding and Interleaving

Channel coding is a form of time diversity
Independent fading is needed on each bit in a 
codeword to get the diversity gain
Interleaving breaks the memory of the channel and 
provides independent fading for each bit 
The cost of interleaving is increased complexity and 
delay


