Spread Spectrum Communications

- Originated in military communications
- Spread the signal over a band much wider than the signal bandwidth

Advantages:
- Low probability of intercept (LPI)
- Interference rejection and anti-jamming capability
- Multiple-access capability
- Multi-path diversity
How is SS different?

- SS makes the transmitted signal occupy a very large transmission bandwidth
- Trades off frequency domain for signal orthogonality
- Allows multiple users to occupy the same frequency band at the same time with minimal interference

Spread Spectrum Techniques

- Direct Sequence Spread Spectrum (DSSS)
- Frequency Hopping Spread Spectrum (FHSS)
- Hybrid (DS/FH)

Both DSSS and FHSS require a PN sequence that appears to be random noise signal
Direct Sequence (DSSS)

- Data stream is XORed with a high-rate Pseudorandom Noise (PN) random sequence
- At the receiver, the received high-rate signal is XORed with the PN sequence again to recover the original signal
- Can be coherently demodulated
- Suffers from near-far problem
- Resistant to multipath fading
- Less expensive receivers

DSSS Implementation

Diagram showing the process of data transmission and reception using direct sequence spread spectrum (DSSS) technology.
DSSS - Interference Rejection

Narrowband Interference

Data → Modulator → Narrowband BPF (Modulation) → Data

Spreading Code

Data → Multiplier

Despreader

Demodulator → Data

Narrowband BPF (Demodulation)
Narrowband Interference Rejection

PSD Interpretation: After despreading (which is the same operation as spreading), the narrowband interference is spread evenly over a bandwidth \(W \). Hence,

DSSS – Code Division Multiple Access (CDMA)
The Processing Gain

- The “Processing Gain” of the system is a figure of merit for how well the system works

\[PG = \frac{T_S}{T_C} = \frac{B_C}{B_S} \]

- This is a ratio of the bandwidth of the spread signal to the baseband bandwidth of the data
Pseudorandom Noise (PN) Sequence

- PN sequence is usually generated at a rate greater than the data rate: (chip rate >> data rate)
- PN sequence has the effect of spreading the spectrum of the data stream over a large frequency band
- PN sequences are based on shift registers and “good” one have a period of $2^m - 1$, where m is the length of the shift register

Popular PN Sequences

- Maximal Length PN sequences
- Walsh Hadamard sequences
- Gold sequences
- Kasami Sequences
Maximal Length Shift Register (MLSR) Sequences

- Also known as PN or \(m \)-sequences
- Structured sequences

\[
X_{n+1} = X_n + c_i X_{n-k}
\]

\(c_i \) = \[
\begin{cases}
0 & \text{no connection} \\
1 & \text{connection}
\end{cases}
\]

Properties of MLSR Sequences

- Periodic with period \(2^r - 1 \), where \(r \) is the number of registers (Maximal-length)
- Balanced property, i.e., \# of 1’s = \# of 0’s + 1
- Sequences of length \(n \) occur with probability \(2^{-n} \) for \(n < m \) and \(2^{-(m-1)} \) for \(n = m \)
- The addition of two \(m \)-sequences is also an \(m \)-sequence (linear operation)
Autocorrelation of MLSR Sequences

\[R(\tau) = \frac{1}{N} \sum_{k=1}^{N} y_k y_{k+\tau} \]

Map 0 to -1

The peak autocorrelation is useful for PN phase synchronization

Example

PN sequence:

1 0 0 0 1 1 1 1 1 0 1 1 0 1 0 0
Walsh Codes

- Walsh codes are the rows (or columns) of a Hadamard matrix
- Hadamard matrix are square, symmetric and of size \([2^n \times 2^n]\)
- They are generated recursively as illustrated.

\[A_0 = [0] \quad \rightarrow \quad A_1 = \begin{bmatrix} A_0 & A_0 \\ A_0 & \overline{A_0} \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \]

\[A_{m+1} = \begin{bmatrix} A_m & A_m \\ A_m & \overline{A_m} \end{bmatrix} \]

General Form

\[A_2 = \begin{bmatrix} A_1 & A_1 \\ A_1 & \overline{A_1} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix} \]

Multipath Mitigation

- SS techniques can be used to improve performance over multipath channels
- SS produces a data stream that has very narrow autocorrelation functions
- Delayed versions of the same spread signal look like uncorrelated with other users to the receiver
- Thus, the receiver can ignore the time-delayed versions of the same signal just as the receiver ignores other users!
The RAKE Receiver

- A RAKE receiver can be used to combine the different multipath components
- The received signal is separated into different branches
- Each branch is multiplied by a PN sequence at a different delay corresponding to the multipath delay
- Resultant signals from branches are then combined to improve detected signal
- So, the RAKE receiver gives diversity reception

The Near-Far Problem

- Signals closer to the receiver of interest are received with smaller attenuation than are signals located further away
- So, the strong signal from the nearby transmitter will mask the weak signal from the remote transmitter
- The near-far effect combined with imperfect orthogonality between codes leads to substantial interference
- Accurate and fast power control is essential
Frequency Hopping (FH-SS)

- The carrier frequency is changed according to a PN sequence
- The carrier only stays at a given frequency for a short time (dwell or hop duration, T_h)
- **Slow hopping**: Multiple bits is transmitted during a hop ($T_h > T_s$)
- **Fast hopping**: Multiple hops per bit ($T_h < T_s$)
- No near-far problem
- Non-coherent demodulation is suitable
- Less resistant to multipath fading
Error Performance of SS

- The Error performance of the system is based on:
 - Channel noise
 - Interference from the other users on the channel that do not correlate with the receiver
 - Typically, the other users can be considered to be a Gaussian noise source
Error Performance of SS

- The probability of error is:

\[P_e = Q\left(\sqrt{\frac{K-1}{3N} + \frac{N_0}{2E_b}}\right) \]

- Where \(K \) is the number of users on the channel and
- \(N \) is the number of chips per bit (the processing gain)

FHSS

- If two users send in the same frequency
 => collision (hit) occurs
- BFSK:
 \[P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right) \]
- For \(K \) users, collision (hit) probability:
 \[P_h = 1 - \left(1 - \frac{1}{M}\right)^{K-1} \]
- For large \(M \),
 \[P_e = \frac{1}{2} \exp\left(-\frac{E_b}{2N_0}\right) \left(1 - \frac{K-1}{M}\right) + \frac{1}{2} \frac{K-1}{M} \]
Multi-Carrier (MC) Modulation

- Mitigates the ISI by dividing the transmit bit stream into \(N \) parallel substreams, each modulated by a separate carrier.
- The transmission bandwidth of the subcarriers can be made less than the channel coherence bandwidth.
- Each subcarrier experiences flat instead of frequency-selective fading.

Performance of MC Over FS channels

- Frequency selective fading leads to different BERs on the different subcarrier channels.
- This can be compensated using a frequency domain equalizer, which inverts the channel gain on each subcarrier.
- This inversion leads to noise enhancement on carriers with low SNR.
- Alternatively, coding can be used across subchannels.
Orthogonal Frequency Division Multiplexing (OFDM)

- OFDM is multi-carrier modulation in which the total bandwidth is split between many narrow band subcarriers.
- High-rate data stream is transformed into several low-rate parallel streams.
- Parallel streams are transmitted in parallel over orthogonal sub-carriers with spacing of $1/(NT)$, where T is the symbol duration over each sub-carrier.
- Sub-carriers are orthogonal => overlapping spectra => high spectral efficiency.

Spectrum of OFDM

FDM Spectrum

Subcarriers in OFDM
OFDM

- OFDM can be implemented using:
 - IFFT at the transmitter combined with a single modulator
 - FFT at the receiver combined with a single demodulator

- Inter-Symbol-Interference (ISI) can be avoided in OFDM system by adding guard interval to each of the OFDM symbols
Advantages of OFDM

- Robust in multipath fading channels
- More tolerant to delay spread:
 - Symbol duration on each sub-carrier is large relative to delay spread => reduced ISI
 - Simplified or eliminated equalization needs
- Different channel coding is used to correct for sub-carriers that suffer from deep fades
- Different modulation techniques can be employed on each sub-carrier => adaptive rate
- Narrow-band interference is reduced

Sub-carriers Orthogonality

Assuming rectangular pulses over each sub-carrier

Before channel

After channel

=> Inter-carrier interference (ICI)
Design Challenges in OFDM

- Sensitive to frequency offset => results in ICI – need frequency offset correction in the receiver.
- Sensitive to oscillator phase noise – “clean” and stable oscillators are required.
- Large peak-to-average power ratio (PAPR) – distortion with nonlinear amplifiers - reduced power efficiency.
- IFFT/FFT complexity – fixed point implementation to optimize latency and performance.
- ISI due to multipath – use guard intervals.

Ultra-Wide Band (UWB)

- Transmission BW is ultra-wide (several GHz)
- Feb 2002: FCC approved UWB (3.1-10.6 GHz)
- IDEA: Spread the signal spectrum over very wide band (much wider than DSSS)
- An UWB signal has a BW that exceeds third its center frequency
- Average transmission power has to be lower than the allowed noise levels of existing systems
- UWB signals appear as low-level noise
- Hence, it can co-exist with existing systems
- Range is limited to several meters (low power)
Ultra-Wide Band (UWB)

![Graph showing power spectral density and frequency for UWB applications]

UWB Techniques

- **Impulse Radio:**
 - Transmits very narrow pulses (in the order of \(\text{ps} \))
 - Employs pulse-position modulation (PPM): information is carried in the pulse position
 - Time-Hopping (TH) is used to allow multiple users
 - Very good communication link
 - Accurate positioning capabilities (in the order of cm)

- **DSSS, FH-SS or Hybrids:**
 - Very similar to SS concepts
 - Processing gain is much larger in this case

- **Hybrid use of TH and SS**