EE 577 - Wireless and Personal
Communications

Chapter 06: Spread Spectrum and
Multi-Carrier Modulation
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Spread Spectrum Communications

QOriginated in military communications

L Spread the signal over a band much wider
than the signal bandwidth

UAdvantages:

ULow probability of intercept (LPI)

Uinterference rejection and anti-jamming
capability

UMultiple-access capability

UMulti-path diversity

EE 577 - Dr. Salam A. Zummo




How is SS different?

LSS makes the transmitted signal occupy a very
large transmission bandwidth

U Trades off frequency domain for signal
orthogonality

UAllows multiple users to occupy the same
frequency band at the same time with minimal
interference
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Spread Spectrum Techniques

O Direct Sequence Spread Spectrum (DSSS)
QO Frequency Hopping Spread Spectrum (FHSS)
QO Hybrid (DS/FH)

Both DSSS and FHSS require a PN sequence that
appears to be random noise signal
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Direct Sequence (DSSYS)

U Data stream is XORed with a high-rate
Pseudorandom Noise (PN) random sequence

U At the receiver, the received high-rate signal is
XORed with the PN sequence again to recover the
original signal

U Can be coherently demodulated
U Suffers from near-far problem
U Resistant to multipath fading

U Less expensive receivers
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DSSS Implementation
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Narrowband Interference Rejection

PSD Interpretation: After despreading (which is the same
operation as spreading), the narrowband interference is spread
evenly over a bandwidth W. Hence,
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DSSS — Code Division Multiple Access
(CDMA)
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CDMA
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The Processing Gain

U The “Processing Gain” of the system is a figure of
merit for how well the system works

pG =15 -5
Te B

U This is a ratio of the bandwidth of the spread signal
to the baseband bandwidth of the data
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Pseudorandom Noise (PN)
Sequence

QPN sequence is usually generated at a rate greater
than the data rate: (chip rate >> data rate)

L PN sequence has the effect of spreading the
spectrum of the data stream over a large frequency
band

L PN sequences are based on shift registers and
“good” one have a period of 2™ — 1, where m is the
length of the shift register
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Popular PN Sequences

Maximal Length PN sequences
dWalsh Hadamard sequences

L Gold sequences

L Kasami Sequences

EE 577 - Dr. Salam A. Zummo

14




Maximal Length Shift Register
(MLSR) Sequences

QAIlso known as PN or m-sequences
O Structured sequences

Xn-l Xn-Z 7777777 Xn-k

0 noconnection
1 connection
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Properties of MLSR Sequences

O Periodic with period 2"-1, where r is the number of
registers (Maximal-length)

Q Balanced property, i.e., #0f 1’s=#0f 0’s + 1

0 Sequences of length n occur with probability 2"
forn<mand 2™ forn=m

U The addition of two m-sequences is also an m-
sequence (linear operation)
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Autocorrelation of MLSR Sequences
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The peak autocorrelation is useful for PN phase

synchronization
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Example

X X.. X.s X

&

PN sequence:

100011110101100
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Walsh Codes

« Walsh codes are the rows (or columns) of a Hadammard matrix
« Hadammard matrix are square, symmetric and of size [ 2™ x 2™ ]

« They are generated recursively as illustrated.
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Multipath Mitigation

O SS techniques can be used to improve performance

over multipath channels

LSS produces a data stream that has very narrow

autocorrelation functions

U Delayed versions of the same spread signal look like

uncorrelated with other users to the receiver

U Thus, the receiver can ignore the time-delayed
versions of the same signal just as the receiver

ignores other users!
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The RAKE Receiver

U A RAKE receiver can be used to combine the
different multipath components

U The received signal is separated into different
branches

U Each branch is multiplied by a PN sequence at a
different delay corresponding to the multipath delay

U Resultant signals from branches are then combined
to improve detected signal

U So, the RAKE receiver gives diversity reception
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The Near-Far Problem

Q1 Signals closer to the receiver of interest are received
with smaller attenuation than are signals located
further away

0 So, the strong signal from the nearby transmitter
will mask the weak signal from the remote
transmitter

0 The near-far effect combined with imperfect
orthogonality between codes leads to substantial
interference

U Accurate and fast power control is essential
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Frequency Hopping (FH-SS)
U The carrier frequency is changed according to a PN

sequence

L The carrier only stays at a given frequency for a
short time (dwell or hop duration, T,)

O Slow hopping: Multiple bits is transmitted during a
hop (T, > Ty)

U Fast hopping: Multiple hops per bit (T, <T,)

U No near-far problem

U Non-coherent demodulation is suitable

U Less resistant to multipath fading
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FHSS in Bluetooth

Carrier freq.

T, 2T, 3T, 4T, 5T, 6T, 7T, time

Random hopping among 79 carrier frequencies

EE 577 - Dr. Salam A. Zummo 25

Error Performance of SS

U The Error performance of the system is based
on:

U Channel noise

U Interference from the other users on the channel
that do not correlate with the receiver

O Typically, the other users can be considered to
be a Gaussian noise source
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Error Performance of SS

U The probability of error is:

-1/2
b _of[X=1, N
e 3N 2F,

U Where K is the number of users on the channel and
U N is the number of chips per bit (the processing gain)
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FHSS

Ol If two users send in the same frequency

=> collision (hit) occurs
Eb

2N0)

U For K users, collision (hit) probability:

K-1
P =1—(1—ij
M

U For large M, Pezlexp _ B [1_K_1)+1E
2 2N,
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Multi-Carrier (MC) Modulation

U Mitigates the ISI by dividing the transmit bit stream

into N parallel substreams, each modulated by a
separate carrier

W The transmission bandwidth of the subcarriers can be
made less than the channel coherence bandwidth

U Each subcarrier experiences flat instead of frequency-
selective fading
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Performance of MC Over FS channels

U Frequency selective fading leads to different BERs on
the different subcarrier channels

U This can be compensated using a frequency domain

equalizer, which inverts the channel gain on each
subcarrier

W This inversion leads to noise enhancement on carriers
with low SNR

U Alternatively, coding can be used across subchannels
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Orthogonal Frequency Division
Multiplexing (OFDM)

W OFDM is multi-carrier modulation in which the total
bandwidth is split between many narrow band sub-
carriers

U High-rate data stream is transformed into several low-
rate parallel streams

U Parallel streams are transmitted in parallel over
orthogonal sub-carriers with spacing of 1/(NT), where
T is the symbol duration over each sub-carrier

U Sub-carriers are orthogonal => overlapping spectra
=> high spectral efficiency
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Spectrum of OFDM

Cartiet n

carrier 1 carier 2

FDM Spectrum

Guerd Bard

carrier2
T

carrier CAHES

Subcarriers
in OFDM

EE 577 - Dr. Salam A. Zummo

16



OFDM

LOFDM can be implemented using:

UIFFT at the transmitter combined with a single

modulator

UFFT at the receiver combined with a single

demodulator

U Inter-Symbol-Interference (I1SI) can be avoided in
OFDM system by adding guard interval to each of the

OFDM symbols
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Advantages of OFDM

0 Robust in mutipath fading channels

U More tolerant to delay spread:

U Symbol duration on each sub-carrier is large relative to
delay spread => reduced ISl

QO Simplified or eliminated equalization needs

Q Different channel coding is used to correct for sub-
carriers that suffer from deep fades

U Different modulation techniques can be employed on
each sub-carrier => adaptive rate

U Narrow-band interference is reduced

EE 577 - Dr. Salam A. Zummo

35

Sub-carriers Orthogonality

Assuming rectangular pulses over each sub-carrier

Before channel

After channel

=> Inter-carrier
interference (ICI)
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Design Challenges in OFDM

0 Sensitive to frequency offset => results in ICI -
need frequency offset correction in the receiver

U Sensitive to oscillator phase noise — “clean” and
stable oscillators are required.

U Large peak-to-average power ratio (PAPR) —
distortion with nonlinear amplifiers - reduced power
efficiency

QIFFT/FFT complexity — fixed point implementation
to optimize latency and performance.

QISI due to multipath — use guard intervals.
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Ultra-Wide Band (UWB)

L Transmission BW is ultra-wide (several GHz)
U Feb 2002: FCC approved UWB (3.1-10.6 GHz)

L IDEA: Spread the signal spectrum over very wide
band (much wider than DSSS)

L An UWB signal has a BW that exceeds third its
center frequency

L Average transmission power has to be lower than the
allowed noise levels of existing systems

L UWAB signals appear as low-level noise
L Hence, it can co-exist with existing systems
L Range is limited to several meters (low power)
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Ultra-Wide Band (UWB)
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UWB Techniques

O Impulse Radio:

U Transmits very narrow pulses (in the order of ps)

WU Employs pulse-position modulation (PPM): information is
carried in the pulse position

U Time-Hopping (TH) is used to allow multiple users
UVery good communication link

U Accurate positioning capabilities (in the order of cm)
U DSSS, FH-SS or Hybrids:

QVery similar to SS concepts

U Processing gain is much larger in this case
U Hybrid use of TH and SS
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