

Doppler Shift

□If the transmitter and receiver are approaching, the frequency is higher while if they are moving apart, the frequency is lower.

The phase difference between the paths:

$$\Delta \varphi = \frac{2\pi\Delta l}{\lambda} = \frac{2\pi v \Delta t}{\lambda} \cos \theta$$

The **Doppler shift** is: $f_D = \frac{1}{2\pi} \frac{\Delta \phi}{\Delta t} = \frac{v}{\lambda} \cos \theta$

Coherence Time

The Coherence Time, T_C is proportional to the maximum Doppler frequency f_D , (time over which the channel correlation function is larger than 0.9)

$$T_C \approx f_D^{-1}$$

If we are more generous (time over which the channel correlation function is > 0.5):

$$T_C \approx \frac{9}{16\pi f_D}$$

EE 577 - Dr. Salam A. Zummo

Duality	
$R(\Delta f)$ gives the range of frequency over which two spectral components have strong correlation.	$R(\Delta t)$ yields knowledge about the span of time over which two received signals have strong correlation.
$S(\tau)$ gives the time spreading of a transmitted pulse in the time-delay domain.	S(λ) yields knowledge about the spectral spreading of a transmitted sinusoid in the Doppler-shift domain.
B_c sets an upper limit on the signaling rate which can be used without suffering frequency- selective fading ($W \ll B_c$)	f_D sets a lower limit on the signaling rate which can be used without suffering fast-fading distortion ($W >> f_D$)
EE 577 - Dr. Salam A, Zummo 51	

