



























| FDD                                   | vs. TDD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| FDD (Freq                             | uency Division Duplex)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |
|                                       | 10 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |
| Downlink<br>carrier (f <sub>D</sub> ) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ] |
| Uplink<br>carrier (f <sub>U</sub> )   | $\uparrow \uparrow $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |   |
| <u>TDD (Time</u>                      | <u>e Division Duplex)</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
| Common<br>carrier                     | $\begin{array}{c c} \bullet & 10 \text{ ms} \\ \hline & \uparrow & \downarrow & \downarrow$ | ] |
|                                       | EE577 - Salam A. Zummo 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |

























| 014                                                          |                                                                             |   |   |    |
|--------------------------------------------------------------|-----------------------------------------------------------------------------|---|---|----|
| □ Fo<br>un                                                   | r hexagon cells, to have a iform co-channel distance                        | i | j | N  |
| D<br>N                                                       | for all cells in the system,<br>must obey the relation:                     | 1 | 0 | 1  |
| <i>N</i> □ <b>R</b>                                          | $N = i^2 + i \times j + j^2 \qquad i \ge j \ge 0$ Regardless of the cluster | 1 | 1 | 3  |
| size, each cell has 6 first<br>tier co-channel cells.        | 2                                                                           | 0 | 4 |    |
| Co-channel cells are identified from ( <i>i</i> , <i>i</i> ) | 2                                                                           | 1 | 7 |    |
|                                                              |                                                                             | 2 | 2 | 12 |







|                  | Example                                                                                                                                                                                                                                                                                                                                                 | 1  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Dete<br>syste    | ermine the number of channels per cell for the following cellular<br>em for $N = 4$ and $N=7$ :<br>A total of 33 MHz bandwidth is allocated to the system.<br>It is divided into 50-kHz (voice/control) channels.<br>One control channel per cell.<br>Frequency re-use factor of control channels is 3 times less than voice<br>channels.               |    |
| □ Solu<br>■<br>■ | <ul> <li>tion:</li> <li>Total number of channels = 33000/50 = 660</li> <li>N = 4:</li> <li>12 channels reserved for control.</li> <li>Every cell has 648/4 = 162 voice channels and one control channel</li> <li>N = 7</li> <li>21 channels reserved for control</li> <li>639/7 = 91.3. Two cells have 92 + control, five have 91 + control.</li> </ul> |    |
|                  | EE577 - Salam A. Zummo                                                                                                                                                                                                                                                                                                                                  | 32 |

































































| able 3.4 Ca                    | pacity of an E | Erlang B Syste            | em                      |         |
|--------------------------------|----------------|---------------------------|-------------------------|---------|
| Number of<br>Channels <i>C</i> | = 0.01         | Capacity (Erla<br>= 0.005 | ngs) for GOS<br>= 0.002 | = 0.001 |
| 2                              | 0.153          | 0.105                     | 0.065                   | 0.040   |
| 4                              | 0.869          | 0.701                     | 0.535                   | 0.439   |
| 5                              | 1.36           | 1.13                      | 0.900                   | 0.762   |
| 10                             | 4.46           | 3.96                      | 3.43                    | 3.09    |
| 20                             | 12.0           | 11.1                      | 10.1                    | 9.41    |
| 24                             | 15.3           | 14.2                      | 13.0                    | 12.2    |
| 40                             | 29.0           | 27.3                      | 25.7                    | 24.5    |
| 70                             | 56.1           | 53.7                      | 51.0                    | 49.2    |
| 100                            | 84.1           | 80.9                      | 77.4                    | 75.2    |











| Trunk Utilization                                                                                                                                                                                             |          |          |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------|
| $\Box U = (1 - P_{\rm p})(A/C)$                                                                                                                                                                               | Load (E) | # Trunks | U    |
| <ul> <li>Table produced at 1% blockage.</li> <li>Observations:</li> <li>The larger the offered load the better the utilization (to some extent)</li> <li>Increased efficiency in sharing resources</li> </ul> | 1        | 5        | 0.20 |
|                                                                                                                                                                                                               | 2        | 7        | 0.29 |
|                                                                                                                                                                                                               | 4        | 10       | 0.40 |
|                                                                                                                                                                                                               | 8        | 15       | 0.53 |
|                                                                                                                                                                                                               | 10       | 18       | 0.56 |
|                                                                                                                                                                                                               | 30       | 42       | 0.71 |
|                                                                                                                                                                                                               | 50       | 64       | 0.78 |
|                                                                                                                                                                                                               | 60       | 75       | 0.80 |
|                                                                                                                                                                                                               | 90       | 106      | 0.85 |
|                                                                                                                                                                                                               | 100      | 117      | 0.85 |

























|   | Example Example                                                                                                                                                   |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Given:                                                                                                                                                            |
|   | number of available voice channels = 400, $n = 4$ , $N = 7$ , $A_u = 0.03$ E. We require GoS=0.01.                                                                |
|   | Unsectorized design:                                                                                                                                              |
|   | number of channel/cell = 57                                                                                                                                       |
|   | For $GoS = 1\%$ blocking, $A = 44.2$ Erlangs                                                                                                                      |
|   | For $A_u = 0.03$ E, number of users/cell = 1473                                                                                                                   |
|   | For the sectored system, $N = 4$ .                                                                                                                                |
|   | ■ Number of channel/cell = 100.                                                                                                                                   |
|   | Number of channels/sector = 33.                                                                                                                                   |
| _ | For $GoS = 1\%$ , A = 22 E. Number of users/sector = 733, per cell = 2199                                                                                         |
|   | Capacity enhancement in terms of number of users $= 2199/1473 = 1.5$                                                                                              |
|   | While Capacity enhancement in terms of number of channels $= 7/4 = 1.75$                                                                                          |
|   | Note that in this example the sectored system still provides marginal <i>SIR</i> Over the unsectored system.                                                      |
|   | If we decide to utilize sectorization for the sole purpose of increasing <i>SIR</i> , then the sectored system will result in reduction in number of subscribers. |



















![](_page_46_Figure_1.jpeg)