EE400 Telecommunication Networks

Lecture 2: Network Topology

Dr. Salam Zummo Electrical Engineering Department KFUPM Fall 2007

Identifying a Network Type

- Communications medium
 - Wire cable, fiber-optic cable, radio waves, microwaves
- Protocol
 - How networked data is formatted into discrete units
 - How each unit is transmitted and interpreted
- Topology
 - Physical layout of cable and logical path
- Network type
 - Private versus public

Fall 2007

EE 400 - Dr. Salam Zummo

Network Topology

- The study of location
- Two types Physical and Logical
- Physical describes the wiring scheme
- Logical describes how data flows through the network
- Network can have different physical and logical topologies

Fall 2007

EE 400 - Dr. Salam Zummo

3

Types of Topologies

- Fully connected (mesh)
- Bus
- Ring
- Star
- Extended Star
- Tree
- Irregular
- Cellular

Fall 2007

EE 400 - Dr. Salam Zummo

Mesh Topology

- Mesh topology: every node is linked directly to every other node.
- Simple, straight forward operation
- Redundant connection, should any link fail to function, information can flow through any number of other links to reach its destination.
- Very costly [N users require Nx(N-1) links]
- Not practical for geographically distributed users

Fall 2007

EE 400 - Dr. Salam Zummo

5

Complete (Mesh) Topology

Bus Topology

- Single cable connects all computers
- Each computer has connector to shared cable
- Terminators signal the physical end to the segment
- Logical all devices can see all communications
- Physical each device is on the same wire
- Computers must synchronize and allow only one computer to transmit at a time

Laser printer
Workstation
Server
Laptop computer
Workstation
Terminator

Fall 2007

EE 400 - Dr. Salam Zummo

Bus Topology

- Advantages of Bus Topology
 - Works well for small networks
 - Relatively inexpensive to implement
 - Easy to add to it
- Disadvantages of Bus Topology
 - Management costs can be high
 - Potential for congestion with network traffic

Fall 2007

EE 400 - Dr. Salam Zummo

7

Ring Topology

- Computers connected in a closed loop
- First passes data to second, second passes data to third, and so on
- Continuous path for data with no logical beginning or ending point, and thus no terminators
- Logical each station passes data to adjacent station
- Physical devices wired in a daisy chain

Fall 2007

EE 400 - Dr. Salam Zummo

Ring Topology

- Advantages of Ring Topology
 - Easier to manage; easier to locate a defective node or cable problem
 - Well-suited for long distances on a LAN
 - Handles high-volume network traffic
 - Enables reliable communication
- Disadvantages of Ring Topology
 - Expensive
 - Requires more cable and network equipment at the start
 - Not used as widely as bus topology

Fall 2007

EE 400 - Dr. Salam Zummo

9

Star Topology

- Oldest and most common network design
- Multiple nodes attached to a central hub
- Physical all nodes connected to center node
- Logical all data passes through center node

Fall 2007

EE 400 - Dr. Salam Zummo

Star Topology

- Advantages of Star Topology
 - Easy to design and install
 - Low startup costs and easy to manage and maintain
 - Layout is easy to modify and troubleshoot
 - Reliable
 - Easily scalable (Easy to add hosts)
- Disadvantages of Star Topology
 - Hub is a single point of failure
 - Requires more cabling than the bus

Fall 2007

EE 400 - Dr. Salam Zummo

11

E-Star Topology

 An extended star topology repeats a star topology, where each node that links to the center node is, also, the center of another star.

Fall 2007

EE 400 - Dr. Salam Zummo

Tree & Irregular Topologies

- The tree topology is similar to the extended star topology, the primary difference being that it does not use one central node. Instead, it uses a trunk node from which it, then, branches to other nodes.
- Example: Telephone networks.
- Irregular Topology: there is no obvious pattern to the links and nodes. The wiring is inconsistent; the nodes have varying numbers of wires leading from them.

Fall 2007

EE 400 - Dr. Salam Zummo

13

Cellular Topology

- The cellular topology consists of circular or hexagonal areas, each of which has an individual node at its center.
- Used in wireless cellular networks

Fall 2007

EE 400 - Dr. Salam Zummo

Topology-Design Related Issues

- Cost of installation and maintenance
- Redundancy
- Reliability (no single point of failure)
- Expandability (scalability)
- Need for Switching
 - Process of directing traffic through the network based on a pre-defined route
- Need for Routing
 - Process of finding the best route for the traffic
- Delay
-

Fall 2007

EE 400 - Dr. Salam Zummo

15

Sub-networking

- Organize a large network in smaller networks
- Provide a connection between subnetworks
- Use multiplexing to share the connection between subnetworks.

Fall 2007

EE 400 - Dr. Salam Zummo

Media Sharing Techniques

- Channelization Schemes
 - Time Division
 - Frequency Division
- Random Access Schemes
 - ALOHA
 - □ CSMA
- Scheduling Schemes
 - Polling
 - Token Ring

Fall 2007

EE 400 - Dr. Salam Zummo

Telephone Networks

- Traffic characteristics:
 - Communication sessions in minutes
 - Information flow is uniform
 - Real time
- Connection: Circuit Switching
 - A circuit/path is set up prior to the session
 - It is maintained for the session duration
 - All traffic flows along this path.

Fall 2007

EE 400 - Dr. Salam Zummo

19

Circuit-Switched Networks

- A switched dedicated circuit is created to connect two (or more) parties
- Similar to a direct physical path between senders and receivers
- Three phases to circuit-switched communication:
 - Creation of the temporary circuit
 - Information transmission
 - Circuit termination
- Users may not be able to initiate communication sessions during peak usage times because of limited number of circuits at a time (Blocking Probability)
- Since it is a dedicated path, it is expensive

Fall 2007

EE 400 - Dr. Salam Zummo

Computer Networks: Traffic Characteristics

- Bursty traffic (e.g. Internet browsing)
 - → Multiple users can share the same channel
- Non-real time
 - → Packet switching is used instead of circuit switching

Fall 2007

EE 400 - Dr. Salam Zummo

Packet-Switched Networks

- Data is packetized prior to transmission such that:
 - Each packet is a group of bits organized in a certain structure
 - Each packet contains data bits as well as additional overhead information to ensure error-free transmission
 - Packets may be called blocks, cells, datagrams, data units, or frames
- Packet assembler/disassemblers (PADs) are responsible for:
 - Assembling outgoing data into packets for transmission
 - Unpacking incoming packets so that data can be delivered to intended recipients

Fall 2007

EE 400 - Dr. Salam Zummo

23

Packet-Switching Advantages

- A single-link between packet-switching nodes can be simultaneously shared by multiple senders and receivers
- Senders are not denied access to the network during peak usage periods
- Packet-priority systems can be established (Quality of Service) as in voice-over-IP (VoIP).
- Packet-switching users are charged based on the volume of data (number of packets) transmitted rather than connection time (cheaper)

Fall 2007

EE 400 - Dr. Salam Zummo

Packet-Switching Disadvantages

- Variable transmission delays caused by packet processing and packet queues at packet switches
- Some packet-switching networks support variable packet sizes => longer packet processing times at packet switches
- The inclusion of overhead data in packets reduces data transmission efficiency and throughput compared to circuit-switched networks

Fall 2007

EE 400 - Dr. Salam Zummo

25

Packet-Switching: Datagram

- Connectionless-Oriented:
 - No set up
 - Each packet must carry the destination address
 - Each packet is routed independently
 - Packets may arrive out of sequence
 - Modeled after postal service
 - Example: Internet Protocol (IP)

Fall 2007

EE 400 - Dr. Salam Zummo

Packet-Switching: Virtual Circuit

Connection-Oriented:

- A virtual circuit (end-end connection) is set up before transmission of the message (sequence of packets)
- All packets are routed through the same virtual circuit
- Since the links of the circuit are shared, each packet must carry the virtual circuit (VC) number.
- The VC number is checked at each node along the route.
- Packets may be buffered along the way.
- Example: ATM Networks

Fall 2007

EE 400 - Dr. Salam Zummo

27

Circuit vs. Packet Switching

ITEM	Circuit switching	Packet switching	
		connectionless	connection
Path set up	Yes	No	Yes
Dedicated path	Yes	No	No
Information flow	continuous	Store-and-forward	Store-and-forward
Bandwidth available	Fixed	Dynamic	Negotiated
Addressing	No	Yes (destination)	Yes (VC)
Out of sequence arrival	No	Yes	No
Routing	Not required	Required	Required
Delay	Call set up	Packet transmission	Both

Fall 200

EE 400 - Dr. Salam Zummo

Request

Response