
Inter-symbol Interference 
(ISI) 

 

Unlike analog signals, which are usually smooth in nature, digital signals are composed of pulses with 
often vertical transitions. The fact that digital signals sometimes have vertical transitions increases 
their bandwidth significantly since it requires infinite bandwidth to represent a signal with vertical 
transitions. Compare for example the bandwidth of two baseband signals given by a sine wave with 
frequency 0f  and a square wave with frequency 0f . The sine wave has a single frequency component 

at 0f  Hz. However, the square wave has infinite frequency components at 0f  and integer multiples of 

it. If we consider the bandwidth of a signal to be the minimum frequency that encloses all frequency 
components of the signal (the signal has no frequency components at all above that frequency), then 
the sine wave will have a bandwidth of 0f  Hz because it has no frequency components above that 

frequency, while the square wave has an infinite bandwidth because it theoretically has frequency 
components that extend to infinity. 

The fact that any communication system has limited bandwidth to transmit digital data indicates that 
certainly a transmitted square pulse will be received differently at the receiver as the channel will 
filter some components of it. The difference depends on how narrow the bandwidth of the channel 
compared to the symbol rate in the signal. The effect of filtering part of the transmitted signal by the 
channel on the quality of the received signal may be significant that a phenomenon called “Inter-
symbol Interference (ISI)” occurs. ISI causes the transmitted pulses to get mixed together, meaning 
that a pulse that is transmitted between time instants will smear into adjacent pulses affecting the 
process of data detection and possibly causing errors not as a result of noise but as a result of symbols 
mixing together.   

 

Effect of Channel Bandwidth Limitation on ISI 
Consider a baseband digital signal with symbol rate Rs symbols/second that is composed of a sum of 
square pulses and that is transmitted through different baseband channels with different bandwidths:  

1. Channel with Infinite Bandwidth: Such a channel passes all signal components. In this 
case, the received signal will be exactly the same as the transmitted square wave since the 
complete signal is passed. So, the transmitted data will not experience any ISI at all.  
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2. Wideband Channel with channel larger than Rs/2: the bandwidth of the channel in this 
case is wide but not infinite, so a relatively large amount of the signal power will pass 
and a small amount at high frequencies will be rejected. The data in this case experiences 
some ISI but data can easily be recovered since the ISI is limited.  

0

t

A

2
sR f

 

 
3. Channel Bandwidth is Equal to One Half Symbol Rate Rs/2: The first null (zero) in 

the power spectrum density of transmitted data occurs at one half the sample rate Rs/2. 
The received signal in this situation experiences significant amount of ISI. However, the 
data is still recoverable using some signal processing algorithms. This represents the 
minimum channel bandwidth that would allow us to recover the data completely. Any 
channel bandwidth below this would cause a problem. 
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4. Channel Bandwidth is Lower than One Half Symbol Rate Rs/2: in this case, the ISI is 
huge and loss of data will occur. It is not possible to recover back the data completely no 
matter what signal processing algorithms are used.  
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We see from the previous 4 cases that when transmitting square pulses and the bandwidth of the 
channel is not infinite, then ISI will occur. However, as long as the bandwidth of the channel is 
greater than one half the symbol rate, data can be recovered but possibly using some signal processing 
algorithms to remove the effect of ISI. If the channel bandwidth is less than that, then loss of data will 
certainly occur.  

 

Pulse Shaping to Control ISI 
 

The use of rectangular-shape pulses to transmit digital information makes sense because they have 
flat tops which fit the shapes of digital signals perfectly. In addition, a rectangular pulse that extends 
over a bit (or symbol) period avoids interference between consecutive pulses as long as the exact 
shape of the pulses is preseved. However, the power spectral density of rectangular-pulse shapes is 
very wide (remember that the spectrum of a rectangular pulse is a “sinc” function). The wide 
spectrum of rectangular pulses means that such pulses must be transmitted over very wideband 
channels even for relatively low bit (or symbol) rates or else part of the transmitted signal will be 
filtered out by the channel and the received signal will be a distorted version of the transmitted signal. 
Filtering out part of the transmitted signal results in the rectangular pulses getting mixed up with 
preceding and succeeding pulses in what we called above Inter-Symbol Interference (ISI). 

To combat ISI, the pulses that we use to transmit data must have limited bandwidth so that when 
transmitted over limited bandwidth channels, the complete spectrum of these signals is retained and 
no part of it is filtered out. This will guarantee that the signal does not change as it is transmitted 
through the channel. However, limiting the bandwidth of the pulses we use to transmit data causes 
their duration in time to be infinite (remember that time limited signals are frequency unlimited and 
frequency limited signals are time unlimited). A pulse with an infinite time duration (or at least very 



long time duration) means that each pulse extends over a very large number of bit periods. This is not 
necessarily bad if the pulse is designed properly. What we mean by designed properly is that each 
pulse needs to be equal to a constant (1 V) at the time instant of the start of the bit that this pulse 
represents and at which this bit will be sampled and be zero (0 V) at all time instants of future and 
past bits so not to interfere with these bits at the moments that they are sampled for detection. A class 
of pulses called “Nyquest Pulses” satisfies all these requirements. A famous class of Nyquest pulses 
is called “Raised Cosine” pulses 

 

Raised Cosine Pulses 
 

The class of Raised Cosine pulses include the famous “sinc” function. Although the “sinc” The “sinc” 
function has the narrowest bandwidth of all Nyquest pulses, it decays at a very slow rate that is 
proportional to 1/t. This means that the generation of the “sinc” pulse corresponding to a specific 
symbol must start many symbol periods before the time of the symbol represented by this pulse and 
must continue for many symbol periods after the time of the symbol represented by this pulse. This 
exerts a relatively large computational requirements on the system in additional to a delay before and 
after the transmission of data. Other Raised Cosine pulses provide a compromise between the 
bandwidth (they require more bandwidth than the “sinc” pulse) with the length of tails of the pulse 
(they have much shorter tails than the “sinc” pulse that extend only few symbol periods before and 
after the time of their symbol). 

The general format for a raised cosine pulse is 
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where  α  is a parameter that provides the tradeoff between the bandwidth and tail length of the 
raised cosine function, and sT  is the symbol period. The first component in the raised cosine pulse 

shown above is a “sinc” pulse. The tails of the “sinc” pulse are attenuated further by the second 
component at the rate of 2t . So the raised cosine tails drop at the rate of  3t  which means that for a 
properly designed raised cosine, the tails die out after few (3 to 5) bit or symbol periods only. The 
raised cosine pulse becomes the “sinc” when the parameter 0α = . 

The spectrum of raised cosine pulses is  
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The spectrum is divided into three regions that are shown in the figure below 
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The spectrums and time-domain pulse shapes of several raised cosine pulses are shown below for 
different values of α . 
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For baseband transmission , the symbol rate of the transmitted data that can be transmitted using a 
Raised Cosine pulse is related to α  and the bandwidth of the signal B  by the relation  
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and for passband transmission, the rate is half of the above value, or 
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Important Notes: 

1. The required bandwidth for transmitting a digital data signal is a function of the symbol rate 
Rs not the bit rate Rb. 

2. For a signal with  
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Relation between Probability of Error and C/N Ratio 

 
Unlike analog signals in which quality of the signal is measured in terms of the received signal power 
relative to the noise power, the quality of digital signals is measured in terms of number of errors that 
occur in the received data as a result of added noise. The probability of error (also called bit error 
rate) is related to the C/N ratio of the received signal. To find this relation, let us consider a baseband 
binary transmission (for the case of passband transmission the same concept stands) where we are 
transmitting one of two pulses that have amplitudes +1 V and –1 V with equal probability. That is 

 1 1 VT = +   Prob(Transmitting T1) = 0.5 

 2 1 VT = −   Prob(Transmitting T2) = 0.5 

Clearly, in the absence of any thermal noise or other sources of noise, the received pulses 
corresponding to the above transmissions are 

 1 1 VR = +   (No Noise) 

 2 1 VR = −   (No Noise) 

So, clearly the transmitted data can be recovered with zero probability of error.  

In the presence of thermal noise, the received pulses become accompanied by normally distributed 
noise (noise that has probability density function that follows the Gaussian distribution). So, the 
received signals become: 

 1 1 VR N= + +   (with Noise) 

 2 1 VR N= − +   (with Noise) 

where  N  is a Gaussian random variable. The probability density functions of the two random 
variables R1 and R2 will be similar to the probability density function of N (a zero-mean Gaussian 
random variable) except that the means of two will be +1 and –1, respectively. This is shown below: 

 



 

The bit error probability Pb can be computed using conditional probability as 
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Since  Prob(Transmitting T1) = Prob(Transmitting T2) = 0.5  and since the above two areas are equal 
to each other, then the bit error probability Pb  becomes 

 ( ) ( )1 2 2 1Detecting  was transmitted Detecting  was transmittedbP P R T P R T= =  

which is equivalent to the area in probability density function of the zero mean Gaussian random 
variable shown below: 

 

Therefore, the probability of bit error can be written as 
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This integration does not have a closed form. Instead, it is often expressed in terms of a function 
called the “error function complement (erfc). The above expression becomes 
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What is  x  in the expression above? The value of  x  is what determines the probability of bit error. 
This quantity is related to the signal power and noise power. In fact, this quantity is expressed as  
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where  Eb is the bit energy (energy contained in a bit) while  N0 is the thermal noise power per unit Hz 
of bandwidth. 

Relation between 
0

bE
N  and 

C
N   

 

You may ask, why is the probability of bit error expressed in terms of  Eb/N0 ratio and not in terms of 
C/N ?  

The answer is simple. Assuming equal amounts of noise power are added to the digital signals 
transmitted by two different systems, the probability of error in the received data of the two systems 
may be different. The reason is that although both systems are transmitting equal amounts of power, 
what counts is how much energy is allocated per bit in each system. To see this, consider that one of 
the systems transmits much more data than the other, yet the transmitted power by each system is the 
same. Clearly, the system that transmits more data allocates smaller amounts of energy per bit, and it 
is expected that the probability of bit error for that system would be worse (higher proability of bit 
error). However, this does not mean that the system has a worse performance than the other. So, to 
have fare comparison, it is important to compare two systems with equal bit energy rather than equal 
transmitted power. Now, consider two systems that transmit equal amounts of data. However, one of 
them uses much more bandwidth than the other. Clearly, the system that uses more bandwidth may 
have a lower probability of bit error because of the fact that it is using wider bandwidth. Also, to have 
fair comparison, the thermal noise should be evaluated in terms of noise per Hz. For both of these, it 
is seen that what determines the probability of bit error is Eb/N0 ratio and not C/N ratio. 

 

The ratios of  Eb/N0  and C/N can be related to each other by observing that Energy = Power * Time 
and that Noise per Hz = Total Noise / Bandwidth, or 
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Therefore, 
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The quantity bR
BW

 represents the total bit rate of the system divided by the amount of bandwidth the 

system uses to transmit this data. This is called the “Throughput” of the communication system, 
which is the number of bits/s that the system transmits in each Hz of bandwidth that is allocated for it, 
or 
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Comparison of Different Systems  
a) BPSK 
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a) 4-PSK (QPSK) 
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The benefit of using QPSK over BPSK is that a higher bit rate can be achieved without 
any deterioration in bit error probability performance.

  
b) 8-PSK 
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