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Abstract

In this paper, a new method for the
approximation of discrete time state-affine systems is
proposed. The method is based on the diagonalization of
proposed generalized controllability and obeservability
Gramians. The reduction agorithm employs singular
value decomposition to retain states corresponding to
dominant singular values of these Gramians. The
proposed method can be considered as the generalization
of the Moore's balancing reduction approach for linear
systems. A numerical example is used to illustrate the
effectiveness of the proposed method.
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1 INTRODUCTION

Modeling of physical systems often leads to
higher order models. Analysis, simulation and design
methods based on this higher order model may eventually
lead to complicated structures requiring very complex
logic or unreasonable amount of calculation. It is
therefore desirable to approximate higher order models by
lower ones.

The approximation of higher order complex
systems to lower order models attracted the attention of
many researchers during the past two decades [1 - §].
Various model reduction schemes have been proposed in
the literature. Early methods were concentrated on the
retention of dominant poles in the reduced order model, as
in aggregation methods, or the matching of severa
moments of the origina systems, as in Pade
approximation methods. However, recently one
approach has dramatically changed the status of model
reduction. This approach is the balanced realization.
Balanced model reduction of linear dynamic systems
proved to be a very efficient scheme for the
approximation of large scale systems [1]. Meaningful
motivations to the state space balanced representation and
model reduction via balancing are detailed in [1, 2].
Essentially, strongly controllable and strongly observable
states in a balanced representation are retained in the

reduced order model as the dominant part of the original
high order system. Also, the balanced reduction scheme
proved to have several desirable properties[5].

The success of the application of balanced model
reduction scheme to severa practical systems motivated
many researchers to generalize the balancing concept to
more general dynamic systems. State space balanced
representation and balanced model reduction of bilinear
systems have been treated in [5 - 8]. Application to
bilinear power systems gave good performance of the
approximate system. A balanced reduction
algorithm for homogeneous bilinear systems has been
developed in [9] and proved to be equivalent to practically
balanced linear interconnected sub-systems.

In this work, the balancing concept is defined for
an important class of discrete time nonlinear systems,
called polynomial affine systems. They are represented in
state space form as:

[ I
x(k +1) = Ax(K) + Zum(k)me(k) + Zum(k)Bm (1a)

y(K) = Cx(k) (1b)

where x(k) isan n x 1 state vector, u(k) isascalar input,
y(K) isascalar output, and { A, Ny,,, Br,, C} are matrices of
proper dimensions.

These models represent a major generalization to
bilinear systems and represent severa practical
engineering systems , such as nuclear reactors, heat-
transfer processes, and population models [10, 11]. They
also occur as a byproduct to the discretization of
continuous time bilinear systems [12]. A least square
approximation of polynomial affine systems is developed
in [12]. In this paper model reduction scheme for such
systems is shown to be a simple extension of Moore's
balancing for linear systems. The key problem is to
develop the controllability and observability maps for
such systems. The corresponding “Gramians’ then verify
apair of generalized Lyapunov matrix equations.

2. NOTATIONSAND BASIC BACKGROUND
MATERIAL

Reachablility and observability concepts of the class
of systems in equation (1) have been studied by Tigjun
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and McCormick [10]. The work of Tigun and
McCormick is considered as a generdization to their
counterpart in bilinear systems studied by lIsidori [13],
D'Alessandro et al [14], and Rugh [15]. Results
concerning the above mentioned concepts are summarized
asfollows:

Definition 1. A dtate x of system (1) is said to be
reachable from the origin of the state space if there exists
an input signal that maps the origin of the state space into
the state x in afiniteinterval of time.

Definition 2. System (1) is said to reachable if the set of
reachable states spans 1"

Definition 3. A state x, of system (1) is said to be
unobservable from the origin of the state space if the
response y(t) with x(0) = X, is identical to the response
with x(0) = 0 for every input signal.

Theorem 1. The n-dimensiona state-affine system (1) is
reachable if and only if

rank P=n )]
where, then x [(I + 1)"- 1] matrix P is defined
recursively asfollows:

P= [Plu P2, ceny Pn] (33)
P1=[ByBy, ..., B] (3.b)
Pi = [APi_l, Nlpi'll veey N|Pi_1], i>2 (3C)

Theorem 2. The n-dimensiona state-affine system (1) is
observableif and only if

rank Q =n (@]
where the matrix Q is defined as follows:
Lo N
a
= 2|:| =
Q D I:lv Ql Ca
O
n ]
QAL
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= 1= i>
Q=010 22 (5)
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Theorem 3. The n-dimensiona state-affine system (1) is
minimal if and only if it is reachable and observable.

3. REACHABLITY AND OBSERVABLITY
GRAMIANS

Similar to the linear and bilinear cases, the
reachability Gramian W, and the observability Gramian
W, are, respectively, defined as

W, = P,P, (6.8)

W, = Q,Q, (6.b)

Obvioudly, system (1) isminimal if and only if W, and W,
are positive definite.

The Gramians W, and W, for system (1) can be
computed from the following generalized Lyapunov
equations.

Theorem 4. For a discrete state-affine r system of the
form (1), W, and W, satisfy

| |
NMN+ZMWM“W:—Za§ (7)
1= 1=
|
AW, A+ Z NW, N, -W, =-C'C (8)
1=

The proof of the theorem is given in the Appendix.

Clearly if N; = 0, for i =12, ..., | then it can be
easily observed that W, and W, are the reachability and
observability Gramians of linear systems and equations
(7) and (8) will reduced to the usual Lyapunov equations.

Now we will consider methods to solve the
generalized Lyapunov equations (7) and (8). Solutions for
equation (7) can be obtained by rewriting it in a
Kronecker product linear matrix equation form [16]:

Gp=c ©)
Where

G=AOI+ N ON;+ ...+ NON, (20)
and

p=vec(P)=

[P11, P21s -+ Prts P12 P22, «-or Pri2s -+ Py Pony -emr pnn]T
c = vec (-BB).

Equation (8) can be similarly solved.

4. Balancing and Model Reduction

In this section, an algorithm for reducing state-affine
systems of the form (1) is developed. The algorithm is
based on the concept of a balanced realization. In a
balanced representation the  controllability and
observability Gramians, which represent the input-state
and state-output maps of the system, respectively, are



equal and diagonal. The diagona entries of these
Gramians, called the singular values, measure the degree
of controllability and observability of the states. The most
controllable and most observable states, corresponding to
the largest ordered singular values, are retained in the
reduced model. The order is suggested by the magnitudes
of the singular values.

Once the controllability Gramian W, and the
observability Gramian W, have been determined, the
balanced redlization of system (1) can be obtained by
applying the state-space balancing transformation,

%K) = T x(K), (12)

to equation (1). The state-space representation of the new
systemis,
|
% (kK +1) = Ayx, (k) + Zum(k)meXb(k) +
m=;
|

Z u™(k)Bp, (12.9)

m=1
Y(K) = Cp % (K) (12.b)
where
A, = TIAT, Nom =T NyT, Bpm=T7'B,, and
Cp,= CT.

The controllability and observability Gramians
of the new system are given by,

Wip= TWTT (13
Wep=T W, T (14)

Moreover, these Gramians are egual and diagonal.
Normally the Gramians of the balanced system have the
following special arrangement:

Wip = Wop= 3 =diag [ 01, 02, ..., Oy
0,20,2..0,>0 (15)
The g; called the Hankel singular values of the system, are
determined by
0, = [ (WW,) 2 (16)
where A denotes the ith eigenvalue of WV, .
An efficient algorithm for computation of a balanced

representation for linear systems developed by Laub et. al.
[17] is modified in this paper to compute a balanced

representations of the nonlinear systems. The algorithm is
summarized as follows,

i. Useegs (7 and 8) to find the controllability and
observability Gramians.
ii. Compute Cholesky factors of Gramians: Let L, and L,

denote the lower triangular Cholesky factors of W,
and W, , that is,

W= L L, W, = Lol @7

iii. Compute the singular value decomposition of the

product of the Cholesky factors:

LIL =usvT (18)
iv. Form the balancing transformation
T=LvsY? (19)
v. Form the balanced state-space matrices
A, = TAT (20)
Nom =T N,T, m=1,2,...1 (21
Bon=TBn, m=12..1 (22
C,=CT (23)

To obtain areduced order model, |et the matrices
givenin equation (12) be partitioned as

D(bl(k-l'l)gz Ay A12DD(b1(k)5+
Fook+DH Hor An e (T

l um(k)[Nllm NlZmDD(bl(k)D
r; B\Iﬂm NZZm%(bZ(k)E

|
+ Zum(k) @mg (24.)

k)O
W=l el s

(24.b)

where the vector x,; 0 O" contains the most controllable
and observable states, and the vector x,, 0 O ™" contains
the least controllable and observable states. Also, let Y be
partitioned similarly:



0
5= é (25)

where ¥, =diag[ 0y, ..., 0], and Y, = diag [ Op+1, ..., On).
If o, | on1 »l, then the subsystem given by

|
X (k+1) = Agx (k) + Zum(k) NyimX; (K)

+ Zum(k) B (26.3)

¥r (K) = Cyx (k) (26.b)

is the reduced order model of the full order balanced
system which will contain only the most controllable and
observable parts of the system.

5. EXAMPLE

The algorithm developed in the previous sections
is applied to a seventh order system. This example is
solely to illustrate the results and to evaluate the derived
model reduction algorithm. The matrices A, N;, N, By, B,,
and C of the model are asfollow:

0077 0 0 0 0 0 -0.0440
g 0 0149 -0043 0 0 0 0 g
00 0 0467 O 0 0 0 O

A:E 0 0 -0005 0152 O 0 0 E
E 0 0 0 0 0391 O 0 E
0o 0 0 0 0 0360 0 [
Ho 0 0 0 0 0 0413{

N, =107t x

[0.632 0.093 0.644 0.417 0.825 0.194 0.7260

%).888 0.373 0.721 0.059 0.779 0.401 0.329
[0.859 0.519 0.636 0.642 0.801 0.284 0.1900
%).766 0.789 0.668 0.440 0.490 0.463 0.899%
%).260 0.396 0.017 0.601 0.125 0.793 0.138%
[0.484 0.657 0.797 0.614 0.405 0.396 0.567[]
.463 0.782 0.472 0.180 0.890 0.421 0555H

[0.001 0599 0672 0834 0372 0.721 0.869 [J
001 0181 0554 0343 0243 0120 0.226
[0.681 0736 0.88 0.237 -0.881 0.350 0.2060
H640 0624 0183 0609 0010 0529 0089
(281 0.729 0071 0250 0169 0156 0.1930
0.368 0083 0342 0684 0865 0729 0559[
[9.601 0072 0838 0690 0215 0139 0.612H

B =[0.795 0696 0.753 0670 0.633 0.0564 0.59g"

B,=[0223 0319 0700 0117 0763 0526 0.554"

C=[0588 0330 0.703 0.143 0.162 0.485 0.08602

Using the balancing algorithm we compute the
following Hankel singular values of the system:

s = diag[3.6662, 0.1782, 0.0675, 0.0282, 0.0075, 0.0016,
0.0011].

From the above Hankel singular values, a third
order as well as a second order reduced models were
computed. The state space matrices of the third order
model are,

0.3208 0.1753 0.0153(]

_0 0

Ay = 01299 02071 001737
B-0.0264 00077 0.37325

00.3658 -0.0648 0.1102 [
Npry = [10.0400 -00061 0.0027 [

H-00770 -00198 -0.1199F

02593 -0.1066 - 0.0357[]
Nep = 300392 -0.0284 -0.0096
500674 -00194 00176 [

[11.2359 [ [1.0075(]
0 0 0
By, = 0.22737 By, = [0.21157
H0.1046 F.06840]

Cy =[1.5960 -0.0146 -0.082.

Similarly, the matrices of the second order reduced model
are found to be



[0.3208 0.17520 (00.3658 —0.06480

= N.., =
"~ H.1209 0.2071H ' H0.0400 -0.0061

00.2593 -0.10660

b2~ H 00392 -0.0284

01.2359 [
"~ Ho.22731

_ [1.00750]
27 12115

Cy =[1.5960 -0.0146].

The step response of the original 7" order system, the
third order reduced model, and the second order reduced
model is shown in Figure 1. The third order model
response is essentially superimposed on the origina
response and, therefore, represents a good approximation
to the original system in both transient and steady state
behavior. For the 2nd order reduction, the transient
response is good approximations of the original response.
There is, however, an offset in steady state. This offset is
also present in the balanced model reduction of linear
systems, as it is well known that the model reduction
scheme based on balancing leads generally to good
transient performance and may give poor low frequency
approximation. One can introduce frequency weighting to
improve the low frequency approximation [18].
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Figure 1. Comparison of the outputs for unit step inputs

6. CONCLUSIONS

A new model reduction method for discrete time
state-affine systems has been proposed in this paper. The
method is based on the diagonalization of proposed
generalized controllability and obeservability Gramians.
The generdized controllability and obeservability
Gramians can be obtained from solving generalized
Lyapunov equations. The reduction algorithm employs

singular value decomposition to retain  States
corresponding to dominant singular values of these
Gramians. The algorithm is illustrated through an
example.
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APPENDIX

Proof of Theorem 4

From (6.9)

w=PP =R B 0Ofr B, OO
=RR +PR,P; +

Using eguation 3 gives

W, = BB + B,B; + [+ BB’

+[an N ODONRJAR NP DOONRT

+[AP, NP, O0ONPRJAR, NP, 00O NPR"+0O0
| |

=ZaB.T + ARRTAT +ZNiP1PJNF +
1= 1=

|
ARP AT + Z N;P,P, N 1D
1=1
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