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Abstract 
 

In this paper, a new method for the 
approximation of discrete time state-affine systems is 
proposed. The method is based on the diagonalization of 
proposed generalized controllability and obeservability 
Gramians. The reduction algorithm employs singular 
value decomposition to retain states corresponding to 
dominant singular values of these Gramians. The 
proposed method can be considered as the generalization 
of the Moore’s balancing reduction approach for linear 
systems. A numerical example is used to illustrate the 
effectiveness of the proposed method. 
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1. INTRODUCTION 

 Modeling of physical systems often leads to 
higher order models. Analysis, simulation and design 
methods based on this higher order model may eventually 
lead to complicated structures requiring very complex 
logic or unreasonable amount of calculation. It is 
therefore desirable to approximate higher order models by 
lower ones.  

 The approximation of higher order complex 
systems to lower order models attracted the attention of 
many researchers during the past two decades [1 - 8]. 
Various model reduction schemes have been proposed in 
the literature. Early methods were concentrated on the 
retention of dominant poles in the reduced order model, as 
in aggregation methods, or the matching of several 
moments of the original systems, as in Pade 
approximation methods.   However, recently one 
approach has dramatically changed the status of model 
reduction. This approach is the balanced realization. 
Balanced model reduction of linear dynamic systems 
proved to be a very efficient scheme for the 
approximation of large scale systems [1]. Meaningful 
motivations to the state space balanced representation and 
model reduction via balancing are detailed in [1, 2].  
Essentially, strongly controllable and strongly observable 
states in a balanced representation are retained in the 

reduced order model as the dominant part of the original 
high order system.  Also, the balanced reduction scheme 
proved to have several desirable properties [5].   

 The success of the application of balanced model 
reduction scheme to several practical systems motivated 
many researchers to generalize the balancing concept to 
more general dynamic systems. State space balanced 
representation and balanced model reduction of bilinear 
systems have been treated in [5 - 8].  Application to 
bilinear power systems gave good performance of the 
approximate system. A balanced reduction 
algorithm for homogeneous bilinear systems has been 
developed in [9] and proved to be equivalent to practically 
balanced linear interconnected sub-systems.  

 In this work, the balancing concept is defined for 
an important class of discrete time nonlinear systems, 
called polynomial affine systems.  They are represented in 
state space form as: 
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y(k) = C x(k)                 (1.b) 

where x(k) is an n × 1 state vector, u(k) is a scalar input, 
y(k) is a scalar output, and {A, Nm , Bm , C} are matrices of 
proper dimensions. 

These models represent a major generalization to 
bilinear systems and represent several practical 
engineering systems , such as nuclear reactors, heat-
transfer processes, and population models [10, 11]. They 
also occur as a byproduct to the discretization of 
continuous time bilinear systems [12]. A least square 
approximation of polynomial affine systems is developed 
in [12].  In this paper model reduction scheme for such 
systems is shown to be a simple extension of Moore’s 
balancing for linear systems.  The key problem is to 
develop the controllability and observability maps for 
such systems.  The corresponding “Gramians” then verify 
a pair of generalized Lyapunov matrix equations. 
 
2.  NOTATIONS AND BASIC BACKGROUND 

MATERIAL 
  

Reachablility and observability concepts of the class 
of systems in equation (1) have been studied by Tiejun 

mailto:sbaiyat@kfupm.edu.sa


and McCormick [10]. The work of Tiejun and 
McCormick is considered as a generalization to their 
counterpart in bilinear systems studied by Isidori [13], 
D'Alessandro et al [14], and Rugh [15]. Results 
concerning the above mentioned concepts are summarized 
as follows: 

 
Definition 1. A state x of system (1) is said to be 
reachable from the origin of the state space if there exists 
an input signal that maps the origin of the state space into 
the state x in a finite interval of time. 
 
Definition 2. System (1) is said to reachable if the set of 
reachable states spans ℜ n. 
 
Definition 3. A state xo of system (1) is said to be 
unobservable from the origin of the state space if the 
response y(t) with x(0) = xo is identical to the response 
with x(0) = 0 for every input signal. 
 
Theorem 1. The n-dimensional state-affine system (1) is 
reachable if and only if 
 rank P = n    (2) 
 where, the n × [(l + 1)n- 1] matrix P is defined 
recursively as follows: 
 
P = [P1, P2, ..., Pn]   (3.a) 

P1 = [B1, B2, ..., Bl]   (3.b) 

Pi = [APi-1, N1Pi-1, ..., NlPi-1], i ≥ 2 (3.c) 

Theorem 2. The n-dimensional state-affine system (1) is 
observable if and only if 
 rank Q = n   (4) 
 where the matrix Q is defined as follows: 
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Theorem 3. The n-dimensional state-affine system (1) is 
minimal if and only if it is reachable and observable. 
 
 
3.   REACHABLITY AND OBSERVABLITY 

GRAMIANS 
 

Similar to the linear and bilinear cases, the 
reachability Gramian Wr and the observability Gramian 
Wo are, respectively, defined as  

 *
∞∞= PPWr    (6.a) 

 ∞∞= QQWo
*    (6.b) 

 
Obviously, system (1) is minimal if and only if Wr  and Wo  
are positive definite. 
  
 The Gramians Wr  and Wo  for system (1) can be 
computed from the following  generalized Lyapunov 
equations. 
 
Theorem 4. For a discrete state-affine r system of the 
form (1), Wr  and Wo satisfy 
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The proof of the theorem is given in the Appendix. 

Clearly if Ni =  0, for  i = 1,2, …, l then it can be 
easily observed that Wr and Wo are the reachability  and 
observability Gramians of linear systems and equations 
(7) and (8) will reduced to the usual Lyapunov equations. 

 
Now we will consider methods to solve the 

generalized Lyapunov equations (7) and (8). Solutions for 
equation (7) can be obtained by rewriting it in a 
Kronecker product linear matrix equation form [16]: 
 
Gp = c             (9) 
Where 
G = A ⊗  I + N1 ⊗  N1 + … + Nl ⊗  Nl (10) 

and   

p = vec (P) = 
    [p11, p21, …, pn1, p12, p22, …, pn2, …, p1n, p2n, …, pnn]T 

c = vec (-BBT). 

Equation (8) can be similarly solved.  
 
 
4.   Balancing and Model Reduction 
  

In this section, an algorithm for reducing state-affine 
systems of the form (1) is developed. The algorithm is 
based on the concept of a balanced realization. In a 
balanced representation the controllability and 
observability Gramians, which represent the input-state 
and state-output maps of the system, respectively, are 



equal and diagonal.  The diagonal entries of these 
Gramians, called the singular values, measure the degree 
of controllability and observability of the states. The most 
controllable and most observable states, corresponding to 
the largest ordered singular values, are retained in the 
reduced model. The order is suggested by the magnitudes 
of the singular values. 

 
     Once the controllability Gramian Wr and the 
observability Gramian Wo have been determined, the 
balanced realization of system (1) can be obtained by 
applying the state-space balancing transformation, 
 
xb(k) =  T -1x(k),    (11) 
 
to equation (1). The state-space representation of the new 
system is, 
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y(k) = Cb xb (k)    (12.b) 
 
where 
Ab = T -1AT, Nbm  = T  -1NmT,  Bbm = T -1Bm , and 

Cb = CT.    

 
The controllability and observability Gramians 

of the new system are given by, 
 
 Wrb = T -1WrT -T   (13) 
 
 Wob = T T Wo T   (14) 
  
Moreover, these Gramians are equal and diagonal. 
Normally the Gramians of the balanced system have the 
following special arrangement: 
 
Wrb = Wob = ∑ = diag [ σ1, σ2, ..., σn] 

 σ1 ≥ σ2 ≥ ... σ1 > 0  (15) 

The σi called the Hankel singular values of the system, are 

determined by 
2/1)]([ orii WWλσ =    (16) 

where λi  denotes the ith eigenvalue of  W Wr o . 

 
     An efficient algorithm for computation of a balanced 
representation for linear systems developed by Laub et. al. 
[17] is modified in this paper to compute a balanced 

representations of the nonlinear systems. The algorithm is 
summarized as follows, 
 
i.   Use eqs. ( 7 and 8) to find the controllability and 

observability  Gramians. 
ii. Compute Cholesky factors of Gramians: Let Lr and Lo 

denote the lower triangular Cholesky factors of Wr 

and Wo , that is , 

W L Lr r r
T= ,  W L Lo o o

T=  (17)  

iii. Compute the singular value decomposition of the 

product of the Cholesky factors: 

L L U Vo
T

r
T= Σ    (18) 

iv.  Form the balancing transformation   

T L Vr= −Σ 1 2/    (19)     

v.  Form the balanced state-space matrices 
  

Ab = T -1AT   (20) 
 

 Nbm  = T  -1NmT, m = 1, 2, ..., l (21) 
 
  Bbm = T -1Bm , m = 1, 2, ..., l (22) 
 
  Cb = CT   (23) 
 
 

To obtain a reduced order model, let the matrices 
given in equation  (12) be partitioned as 
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where the vector xb1 ∈  ℜ r contains the most controllable 
and observable states, and the vector xb2 ∈  ℜ  n-r contains 
the least controllable and observable states. Also, let ∑∑∑∑ be 
partitioned similarly: 
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where ∑∑∑∑1 = diag [ σ1, ..., σr], and ∑∑∑∑2 = diag [ σr+1,  ..., σn]. 

If  σr / σr+1 »1, then the subsystem given by 
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is the reduced order model of the full order balanced 
system which will contain only the most controllable and 
observable parts of the system. 
   
 
5. EXAMPLE 

 
 The algorithm developed in the previous sections 
is applied to a seventh order system. This example is 
solely to illustrate the results and to evaluate the derived 
model reduction algorithm. The matrices A, N1, N2, B1, B2, 
and C of the model are as follow:  
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0.612    0.139    0.215    0.690    0.838    0.072    0.601
0.559    0.729    0.865    0.684    0.342    0.083    0.368
0.193    0.156    0.169    0.250    0.071    0.729    0.281
0.089    0.529    0.010    0.609    0.188    0.624    0.640
0.206    0.350    0.881-   0.237    0.188    0.736    0.681

0.226    0.120    0.248    0.343    0.554    0.181    0.001
0.869    0.721    0.372    0.834    0.672    0.599    0.001
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[ ]TB 598.00564.0633.0670.0753.0696.0795.01 =  

[ ]TB 554.0526.0763.0117.0700.0319.0223.02 =  

[ ]08602.0485.0162.0143.0703.0330.0588.0=C  
 
Using the balancing algorithm we compute the 
following Hankel singular values of the system: 
 
∑∑∑∑ = diag[3.6662, 0.1782, 0.0675, 0.0282, 0.0075, 0.0016, 
0.0011]. 
 
 From the above Hankel singular values, a third 
order as well as a second  order reduced models were 
computed. The state space matrices of the third order 
model are,  
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Similarly, the matrices of the second order reduced model 
are found to be 
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The step response of the original 7th order system, the 
third order reduced model, and the second order reduced 
model is shown in Figure 1.  The third order model 
response is essentially superimposed on the original 
response and, therefore, represents a good approximation 
to the original system in both transient and steady state 
behavior.  For the 2nd order reduction, the transient 
response is good approximations of the original response.  
There is, however, an offset in steady state. This offset is 
also present in the balanced model reduction of linear 
systems, as it is well known that the model reduction 
scheme based on balancing leads generally to good 
transient performance and may give poor low frequency 
approximation.  One can introduce frequency weighting to 
improve the low frequency approximation [18]. 
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Figure 1.  Comparison of the outputs for unit step inputs 
 
  

6. CONCLUSIONS 
 

A new model reduction method for discrete time 
state-affine systems has been proposed in this paper.  The 
method is based on the diagonalization of proposed 
generalized controllability and obeservability Gramians. 
The generalized controllability and obeservability 
Gramians can be obtained from solving generalized 
Lyapunov equations. The reduction algorithm employs 

singular value decomposition to retain states 
corresponding to dominant singular values of these 
Gramians. The algorithm is illustrated through an 
example. 
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APPENDIX 
 
Proof of Theorem 4 
 
From (6.a) 
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which is equation (7). 
Proof of (8) is analogous to that of (7). 

Q.E.D. 
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