QUADRATURESPREAD CDMA ERROR PERFORMANCE ANALYSIS WTTH DIVERSITY RECEPTION OVER MULTIPATH FADING CHANNELS

Mohammad Adnan Anclafusi

King Fahd University of Petroleum \& Minerals
Electrical Engineering Department
Dhahran 31261, Saudi Arabia
andalusi@kfupm.edu.sa

Abstract

The paper addresses the ervor performance athalysis of seleation diversity and maximum ratio combining over Rayleigh fading chanhels when the multiple acoess sighalling sehemes use OQPSKmodulated CDMA with andom sighatuve sequences and arbitratilyshaped chip wavefom pulser. Closed-fom bit emor probability expuessions ale deuved based on the use of the Slandaud Gaussian Approximation method, which is found to have encellent aceutacy for OQPSK-type speading. Vatious exalnples awe then giveh to illustiale telative perfomance compansons atmong different modulation typers.

1. INTRODUCTION

Multipath fading aisers in mobile radio communications when the sighal veaches the reeviver through several propagation pats, each with a different time delay and attenuation factor: The artiving sighal replicas may add corstructively or dest roetively depending on their time delays fand hence, relative phases). The verultant canpoxite signal will then have a random flowiuating anplitude, giving tise to what's k now an multipath fading, which constiluter a setious impaitment to mobile tadio communication chanhels [\%].

The use of diver-sequence Code Division Multiple Acoers (CDMA) signalling is a well-k hown efficient texhnique patieulavly suited to combat distotion in multipath fading channels [2, 9]. This can be achieved either by suppreasing late ativing aighals as with other users' multiple-access interference or, move efficiently, by exploiting the inherent diversity provided by such delayed copies of the tiansinited sighal. Theve has been a lot of work on this subjeat, especially with the vecent growing interest in witeless persohal communication systems where multipath fiding is a major challenge.

The work pesented in this paper is at extension of the ertor perfomance ahalysis presented in [8] for single-palh unfaded chanhels. Previous velated work, for the case of BPSK spreading with deleministic sighature sequences, can be found in $[3,+]$. In this paper, we detive additional verults for the case of arbitaly OQPSK-iype modulation ti.e., with atbitatily shaped chip waveform pulser'), and we also include the effeet of tandom spreading sequences. The latter foms of modulation and speading are move relewant to the recently introduced 20 and 30 CDMA standards. The ervor ahalysis presehted is based on the use of the Standaud Gaussian Approximation (SGA) teahnique, which was shown in [8] to be vely aceumate for OQPSK-type sighals twely much unlike the BPSK case [5]).

The paper is onganized as follows. Ln Seation 2, We discuss the sighal and system models. Ln Seation 3, several diversity veceiver stuctures are dersetibed. Then, in Seation + , we study the ertor performance of these reveivers wing the standard Gausian appromimation rechnique. Numetical examples and comparative verults ave shown in Seetion 5, and final conclusions ave given in Seation 6.

2. SISTEM AND SIGNAL MODELS

We corsider the basic model for OQPSK-spuend DS-CDMA sighalling with K multi-users. The binaty random dala symbols of

 where 9 , (t) is the unit pulse over the bitimerval $[0, T]$. The data

 bit, and a chip wavefom pulse $\psi_{c}(t)$ defined over $\left[0, T_{c}\right]$, where T_{c} is the chip interval. Offitet quadialuve modulation is obtained by modulating the spead data onto two in-phase and quadiature catio exs with half a chip $T_{c} / 2$ delay in the L-banch. Slandaud OQPSK is obtained with a reatangulat chip pulse, but the general model and subsequent a halysis applies to arbitialy pulse shapes as well. Denoting by o(t) the pioduct symbol stieama(t)b(t), the terulting太-th user tiatsmitted sighal is
where $\boldsymbol{\theta}_{\mathbf{h}}$ is the catier phase angle and w_{c} its angular fiequency.
The channel model assumes aslow-fading frequency-selective discrete multipath profile $[9,2]$, where the equivalent baseband impulse vesponse (ass seen by the k-1h wer, for exalmple) is given by

$$
\begin{equation*}
h_{\mathbf{M}}(\tau)=\sum_{J=1}^{L} \beta_{\mathbf{W}} e^{j \delta_{\mathbf{L}} J} \delta\left(\tau-\tau_{\mathbf{W}}\right), \tag{2}
\end{equation*}
$$

Foc simplicity, the number L of teceived vesolvable paths is assumed the same for all usem, and the path gain $\boldsymbol{\beta}_{\text {in }}$, phase $\boldsymbol{\theta}_{\boldsymbol{h}}$, and delay mal ate modeled as time-independent tandom procerser over each bit interval ta wad assumption for slowly fading, hohtimeseleative channels). The gains assume a Rayleigh distitibution with the pdf $f_{\mathrm{A}_{\mathrm{s}}}(x)=\frac{n}{p_{0}} e^{-a^{2} / 2 p}$, and the phaser ate modeled by uniform RYs over $[0,2 \pi]$. The path delays $T_{\text {a }}$ ave also assumed i.i.d with a unifom distibution oree the bit interval $[0, T]$.

At the froht end of the receiver, the sighal present or(t) is the sum of delayed, faded replicas of the itansmithed sighals fiom all active users, corvupted by an additive Gausiah hoise proerss nis (t) with twosided power spertial dehsity $N_{0} / 2$

$$
\begin{equation*}
w(t)=n(t)+\sum_{i=1}^{K} A_{m}(t) \bullet h_{m_{1}}(t) \tag{3}
\end{equation*}
$$

Without loss of generality and because of the symmetiy of the model, we foxus on the lat user Q-sighal, and assume a bit $B_{1}^{Q}=1$ was seht, We alsolet $\tau_{1}=\phi_{1}=0$. For the conventional coherent single-user corvelation receiver, the decision statistic at the output of the corvelator is given by

$$
\begin{equation*}
z_{1}^{Q}=\int_{0}^{T} r(\tau) \alpha_{1}^{Q}(\tau) \sin \left(w_{c} \tau\right) d r \tag{+}
\end{equation*}
$$

3. RECE[VERSTRUCTURES

We cotsider coherent detetion where the receiver is able to coheremly lock onto each of the tesolvable multipath echoes, with perfeet acquisition of the path delays and phasers. The paths strengihs, however, ate unknown to the receiver. It is undertiood that such a coherent receiver is difficult to implement beanuse of the fist fluctuations in path phases due to Rayleigh fading. In plactice, the tansmission of a strong pilot sighal is typically used to aid in the cohereht demadulation al the veceiver, as is the case with the 2G\&3G CDMA digital cellular standauds.

3.1. Correbation Recedzer

As a baseline, we consider the simpleri, hon-diversity receiver structure made of asingle convelator matched to a giveh path anong the autiving ones. Beause all paths stiengths in the model are identically distitibuted, the receiver could use any one of them for demodulation. For the comelator matehed to j-th path of the Qbranch of User 1 , the devision statistic is found as

$$
\begin{align*}
Z_{1 j}= & \beta_{1 j} T \sqrt{P / 2}+\eta+\sqrt{P / 2} \sum_{\left\{=1, \Gamma_{T j}\right.}^{L} \beta_{1 \delta} W_{1 j} \\
& +\sqrt{P / 2} \sum_{i=2}^{K} \sum_{\Omega=1}^{L} \beta_{l} W_{i j} \tag{5}
\end{align*}
$$

Wheve the firt tem is due to the derited tighal weighed by the j-th path gain $\beta_{1 j}$, the sewond tem is due to themal hoise, and is zero-mean Gausian with variance $\frac{1}{4} N_{0} T$. The sum in the ithit tem represents the self-interference induced by multipath, and the sum in ihe last tem is the other users' interference due to multipleaccess and multipath combined. Lt is also found $[1,8]$ that

$$
\begin{equation*}
W_{i J}=U_{i j} \cos \left(\Phi_{i v}-\Phi_{1 j}\right)-V_{i v} \sin \left(\Phi_{i v}-\Phi_{1 j}\right) \tag{6}
\end{equation*}
$$

where the phase vatiables $\boldsymbol{\Phi}_{\boldsymbol{w}}$ include the otiginal catier phases as well as phase shifls due to wer asynchohism and moltipath delays, and are modeled as uniform over $[0,2 \pi]$. The tems Und and Vir are given by
 $\boldsymbol{R}(\tau)=C(\gamma-N) \hat{R}_{\psi_{c}}(S)+C(\gamma+1-N) R_{\psi_{c}}(S)$ and $\hat{R}(\tau)=$ $C(\gamma) \hat{R}_{\phi_{c}}(S)+C(\gamma+1) R_{\phi_{c}}(S)$. The chip paltial corvelation functions ate also specified in [1] as $\boldsymbol{R}_{\phi_{c}}(s) \triangleq \int_{0}^{s} \psi_{c}(t) \psi_{c}(t+$ $\left.T_{c}-A\right) d t$ and $\hat{R}_{\psi_{c}(}(A) \triangleq \int_{s}^{T_{c}} \psi_{c}(t) \psi_{c}(t-s) d t$, and $C_{\left(a_{n}\right),\left(a_{m}\right)}($. is the discuele cioss-comelation function between the sequences $\left(\left(a_{n}\right),\left(a_{i n}\right)\right)$. The watiable γ denotes the integer $\left\lfloor r / T_{c}\right\rfloor$, while S repiesents the nearest-chip delay given by $\tau-\gamma T_{c}$. We piesent next other veceiver struetures that exploit the inherent diversity of the tiansmitted DS-CDMA signals in odder to gain baek some of the pelformance loss caused by fading.

32. Selection Diversity Recetver

Since the receiver is assumed to be able to lock onto any of the veceived multipath exhoes, it can use each of these paths to compute decisioh siatistics almilat to (5). The reeviver ant the h choase the laigest one for deaoting. This sheme is k hown as selection diversity ($S D$) reception [10], and has a better performance than the cocrelation teaciver because the different received paths ate assumed to be independent, and hence, will have a small probability of undergoing simultaneous fading.

Eoc simpliaity of notation, we assume that the fust M antiving patts are used (a diventity of onder M). The expersion of the decision statistic used by the selection diversity receiver is the salne as (5) with $\beta_{1 j}$ replaced by β_{50}, wheve

$$
\begin{equation*}
\beta_{5 D}=\operatorname{Ma\pi }\left\{\beta_{11}, \beta_{12}, \ldots, \beta_{1 M}\right\} \tag{9}
\end{equation*}
$$

Ear the subsequent ermor performance analyas, the statistics of β_{SD}^{2} will be needed, and it is easy to verify that its probability dehsity funetion is given by [10]

$$
\begin{equation*}
f_{p_{D D}^{2}}(c)=\frac{M}{2 \rho_{0}}\left(1-e^{-\pi / 2 \rho_{0}}\right)^{M-1} e^{-\pi / 2 \rho_{0}} \text { for } 2 \geq 0 \tag{10}
\end{equation*}
$$

3.3. Maximum Ratio Combining Recetver

In slow fading, an ideal teeeiver can futher be assumed to be able to extimate the path at venglins $\beta_{1 \mathrm{~g}}$'s in addition to theiv phases and time delays. Based on this additional infoxmation, it is k hown [2] that optim um demodulation fin the absence of intersymbol interference) is achieved by wherently combining the decision statisties of each path, weighted by the comesponding path stiength. This maxim um valio com bining (MRC) vereiver uses the daision statistic (for diversity onder M)

$$
\begin{equation*}
Z_{\mathrm{k} \mid R C}=\sum_{j=1}^{M} \beta_{1 \mathrm{l}} Z_{1 \mathrm{j}} \tag{11}
\end{equation*}
$$

In this case, the emor perfomance will depend on the statistic $\beta_{\text {hirc }}^{2}=\sum_{+n-1}^{M} \beta_{1+n}^{2}$, which has a chi-squale distitibution with 2M degrees of fieedom [10]

$$
\begin{equation*}
f_{N \mid R C}^{2}(c)=\frac{1}{(M-1)\left[\left(2 \mu_{0}\right)^{M}\right.} c^{M-1} e^{-x / 2 \rho o} \text { for } 2 \geq 0 \tag{12}
\end{equation*}
$$

4. ERROR PEREORMANCE ANALISIS

The problem of evaluating the average SNR of DS-CDMA sighals with multiple-acoers and multipath interferenee has been studied
pueviously for deleministic sequences with BPSK $[3,+]$. The case of tandor sighature sequencer with BPSK was ahalyzed in [7]. In the following, we puisue the extension to generalized OQPSK for the different receiver structures discussed in the previous seetion. We only use the standand Guussian approximation technique which was found in [8] to have excellent aceutacy with OQPSKtype modulation formats.

4.1. Corretation Receiver Error Periormance

We begin by finding the average SNR at the culput of the receiver: assuming that the totalinterference (multipath plus multiple-aceers) is Gaussian with a desultant valiance that adds on to the theimal noise valiance. By fist conditioning on the path stitength $\beta_{15}^{\prime \prime}$, the conditional SNR is oblained, and averaging over the Rayleigh p.d.f of $\beta_{1 j}^{2}$ gives the final unconditional probability of evior: From (5), it follows that

$$
\begin{equation*}
\mathrm{E}\left[Z_{\mathrm{CR}} \mid \beta_{1 \mathrm{j}}\right]=\beta_{1 \mathrm{j}} T \sqrt{P / 2} \tag{13}
\end{equation*}
$$

The total vatianee of the decision statistic i is also given by

In the above equation, we note that the multipath teims in the filst sum (due to User l) ate uncorvelated with the teims in the seeond sum (due to multiple-acoess and multipath from the vemaining usest'). This can be seen by conditioning on the sighature sequence $\underline{Q}_{1}^{Q}=\left(a_{1,0}^{Q}, G_{1,1}^{Q}, \ldots, a_{1, N-1}^{Q}\right)$ and using the fact that, for $\mathcal{N} \geq 2$, $\mathrm{E}\left[W_{11} W_{1} \mid \underline{\underline{\alpha}}_{1}^{\mathrm{Q}}\right]=\mathrm{E}\left[W_{11} \mid \underline{\underline{q}}_{1}^{\mathrm{Q}}\right] \mathrm{E}\left[W_{u} \mid \underline{\underline{q}}_{1}^{\mathrm{Q}}\right]=0$. Then, averaging over $\underline{\underline{a}}_{1}^{Q}$ proves the terult. By a similar argument, it is also clear that the $W_{1,}$'s ate uncorvelated, and so ate the $W_{a n \prime}$'s for $k \neq 1$. Therefore, we can add the second momems of the tandom vaitables in the last expertation of (1+) to obtain the multipath and multiple-acceas interference vatiances

$$
\begin{align*}
& \sigma_{N / h 1}^{2}=\sum_{d=1, \sqrt{+j}}^{L} \mathrm{E}\left[\beta_{H J}^{2}\right] \mathrm{E}\left[W_{1 S}^{2}\right] \\
& =\rho_{0} r \sum_{J=1, r+j}^{L} E\left[W_{1 d}^{2}\right], \tag{15}
\end{align*}
$$

and

$$
\begin{align*}
& \sigma_{n \mid A l}^{2}=\sum_{i=2}^{\boldsymbol{K}} \sum_{\sqrt{2}=1}^{L} E\left[\beta_{i d}^{2}\right] E\left[W_{i J}^{2}\right] \\
& =\rho_{0} P \sum_{i=2}^{\boldsymbol{K}} \sum_{J=1}^{L} \mathrm{E}\left[W_{\boldsymbol{i} I}^{2}\right] . \tag{16}
\end{align*}
$$

The explession of the multiple-access vaiance $\sigma_{\text {halal }}^{2}$ can be teadily used fiom the tesults of [8], and is given by

$$
\begin{equation*}
\mathrm{E}\left[W_{\mathbf{w}}^{2}\right]=2 N T_{c}^{2} M_{c}, k=2, \ldots, K, t=1, \ldots, L \tag{17}
\end{equation*}
$$

where the the patameler $M_{c} \triangleq \frac{1}{T_{c}^{4}} \int_{0}^{T_{c}} R_{\psi_{c}}^{2}(A) d y$ reptesents a etrip mean-squated cotrelation parameler that depends on the actual shape of the chip waveform $\psi_{c}(t)$. It then follows that

$$
\begin{equation*}
\sigma_{\mathrm{llAl}}^{2}=(K-1) L E_{b}^{\prime} T_{c} M_{c}, \tag{18}
\end{equation*}
$$

where $E_{b}^{\prime}=\mathrm{E}\left[\beta_{\dot{k}}^{2}\right] P T=2 \rho_{0} E_{b}$ is the average faded energy per bit. On the other hand, the vatianee $\sigma_{\text {MPl }}^{2}$ of the self-multipath teitm is derived differently bearase it intolves the autcoortelation function $\vec{R}_{11}^{Q Q}\left(\pi_{15}\right), i \neq j$. The delails of the detivation of $\mathrm{E}\left[W_{i I}^{2}\right]$ are omitted heve for space teasons. We finally oblain

$$
\begin{equation*}
\mathrm{E}\left[W_{1 v}^{2}\right]=(3 N-1) T_{c}^{2} M_{c}, \tag{19}
\end{equation*}
$$

and therefore,

$$
\begin{align*}
\sigma_{M \mid P}^{2} & =\frac{3 N-1}{2 N}(L-1) E_{b}^{\prime} T_{c} M_{c} \tag{20}\\
& \approx \frac{3}{2}(L-1) E_{b}^{\prime} T_{c} M_{c} \tag{21}
\end{align*}
$$

where the last approximation is oblained for lauge N. Consideting now the average SNR for a fined value of β_{15}^{2}, this is given by

$$
\begin{align*}
\operatorname{SNR} & =\frac{\left(\mathrm{E}\left[Z_{C R}\right]\right)^{2}}{\mathrm{Varl}_{\mathrm{L}}\left[Z_{C R}\right]} \\
& =\frac{\frac{1}{2} \beta_{1 j}^{2} T^{2} P}{\frac{1}{4} N_{0} T+\sigma_{\mathrm{MPl}}^{2}+\sigma_{\mathrm{MAl}}^{2}} \tag{22}
\end{align*}
$$

Substituting (18) and (20) into (22) and tegrouping terms, the expiession of the SNR conditioned on $\beta_{1 j}$ beacanes

$$
\begin{equation*}
\operatorname{SNR}=\frac{\left(\beta_{1 j}^{2} / \rho_{0}\right) E_{b}^{\prime}}{N_{0}+K_{\varepsilon / f} E_{b}^{\prime} \frac{M_{c}}{N}}=\frac{\beta_{1 j}^{2}}{2 \rho_{0}} \operatorname{SNR}_{0} \tag{23}
\end{equation*}
$$

Wheve $K_{2 / f}=4 K L+2 L-6$ denoles the effertive number of multiuser and multipath components, and $S N R_{0}$ denotes the average SNR given by

$$
\begin{equation*}
\operatorname{SNR} 0=\frac{2 E_{b}^{\prime}}{N_{0}+K_{c / f} E_{b}^{\prime} \frac{M_{c}}{N}} \tag{2+}
\end{equation*}
$$

If the themal noise is negligible ($\left.N_{0}=\mathbf{0}\right)$, the average SNR becomes independent of the fided bit energy and simplifies to

$$
\begin{equation*}
\operatorname{SNR} R_{0}=\frac{2 N}{K_{2 f / f} M_{\varepsilon}} \tag{25}
\end{equation*}
$$

From the expressions of SNRe in (24) and (25), we point out the importance of the ratio M_{c} / N tor equivalently, the normalized bandwidth-mean-squated-cortel ation product BMI $_{2}$) as a single puatarer for compating the error performance of different chip waveforms. This will be further diseused next.

Finally, the bit ector probability is approximated by integrating (23) over the p.d.f of β_{15}^{2} (which is exponential, with parameler 2 p_{0}). The evaluation of the integral is a classical tesult [9], giving

$$
\begin{align*}
P_{b} & \approx \int_{0}^{\infty} Q\left(\sqrt{\operatorname{SNR} \mid \mathcal{S}_{1 j}^{2}}\right) f_{\beta_{1 j}^{\prime}}(c) d t \tag{26}\\
& =\frac{1}{2}\left[1-\sqrt{\frac{S N R R_{0}}{\operatorname{SNR}_{0}+2}}\right] \tag{27}
\end{align*}
$$

4.2. Selection Dtverstify Error Performance

For the case of a seleation diversity vereiver, it was suggested in [3] that the bit etor analysis is similat to the cotvelation receiver case, except that averaging of (23) should take place over the disitibution of $\beta_{s D}^{2}$ as given in (10) itstead of that of β_{15}^{*}. However, we point out heve that this is hot exadly aceucate beause the path stiengths of the vemaining $M-1$ paths that ave not selected ave ho longer independent and Rayleigh-distlibuted since it is know that they ate smaller than the given β_{30}^{2}. Therefore, in computing the self-multipath interference vatiance $\sigma_{\text {bin }}^{2}$, it is hot aceutate to replace the second moments $E\left[\beta_{1 j}^{2}\right]$ by $2 \rho_{0}$ these second moments should be simaller). The corven approach is to chataderize the joint statistics of $g_{s 0}^{2}$ and the vemaiting $M-1$ paths, and use it to obtain a hew experssion for $\sigma_{\mathrm{ain}}^{2}$ and $S N R 0$. But this joint charaderization proved to be difficult. On the other hath, it is believed that the a portetioti independence and Rayleigh distitbution assumptions for the noh-seleated paihs afler langest path seleation will lead to an upper bound on the bit ervor probability that should be faitly tight, and this is pimatily for two ieasons. Fita, the contitbution of the self-multipath from the intended user to the total interference valiance (dehominator of the SNR in (22)') is compalatively small, especially with a lage number of other independent interferest, each with a multiple number of paths. And secondly, when the diversity order M becomes large, the aforementioned assumptiors will be move and move applicable since in this case, a laige walue for $\beta_{x 0}^{2}$ will tend to vestove the independence and Rayleigh statistics of the hon-seleated path stiengtis.

Therefore, in the following, we take a similar appoach as in [3] and make use of the previous detivations for the ertor performance with convelation veception. To this effert, we note that the expansion of (l0) giver $f_{\beta_{\mathrm{x}}^{2}}(c)$ as a weighted sum of exponential pdf's

$$
\begin{equation*}
f_{\beta_{s}^{2}}(x)=M \sum_{t n=0}^{M}\binom{M-1}{m} \frac{(-1)^{n n}}{(m+1) / 2 \rho_{m n}} e^{-m / 2 \rho_{m}} \tag{28}
\end{equation*}
$$

whece $\rho_{0 r n} \triangleq \rho_{0} /(m+1)$. Therefore, as shown in [6], the bit ericx probability is a sum of tems of the fom (26) vesulting in

$$
\left.\begin{array}{rl}
P_{b} & \approx \int_{0}^{\infty} Q\left(\sqrt{\operatorname{SNR} \mid \beta_{5 D}^{2}}\right) f_{B_{3 D}}(c) d x \\
\approx & M \sum_{i n-1}^{M-1}\binom{M-1}{m} \frac{(-1)^{+n}}{2(m+1)}
\end{array}\right] .
$$

4.3. Maxtmam Ratlo Combtntng Error Performance

The perfomatne of this receiver is detemined by considening the decision statistic in (11) conditioned on the $\left.\left\{\beta_{15}\right\}\right\}_{-1}^{\mathcal{N}}$. We have

$$
\begin{align*}
\mathrm{E}\left[Z_{\mathrm{v}, \pi} \mid\left\{\beta_{1 j}\right\}\right] & =\sum_{j=1}^{M} \beta_{1 \mathrm{j}} \mathrm{E}\left[Z_{1 j} \mid \beta_{1 \mathrm{j}}\right] \\
& =T \sqrt{P / 2} \sum_{j=1}^{M} \beta_{1+n}^{2} \tag{30}
\end{align*}
$$

$$
\begin{aligned}
\operatorname{Var}\left[Z_{\mathrm{v} \mid \kappa} \mid\left\{\beta_{1 j}\right\}\right] & =\sum_{j=1}^{M} \beta_{1 j}^{2} V_{u l}\left[Z_{1 j} \mid \beta_{1 j}\right] \\
& =\frac{1}{4}\left(N_{0} T+K_{\varepsilon f / f} E_{b}^{\prime} \frac{M_{c}}{N}\right) \sum_{j=1}^{M} \beta_{1 j}^{2}(31)
\end{aligned}
$$

Taking the ratio of the squared expertation to the vaiance, the conditional SNR is found to be the sum of the individual conditional SNR's per path

$$
\begin{align*}
\operatorname{SNR} & =\frac{\left(1 / \rho_{0}\right) E_{b}^{\prime}}{N_{0}+K_{c \prime f} E_{b}^{\prime} \frac{M_{c}}{N}} \sum_{j=1}^{M} \beta_{1 j}^{0} \\
& =\frac{1}{\rho_{0}} \operatorname{SNR} R_{0} \beta_{\mathrm{N}, \mathrm{RC}}^{2} \tag{32}
\end{align*}
$$

Finally, averaging over the paf of $\beta_{\text {une }}$ in (12) gives a closed form expression for the bit error probability [9]

$$
\begin{align*}
P_{b} \approx & \int_{0}^{\infty} Q\left(\sqrt{S N R \mid \beta_{\mathrm{a}}^{2}, x}\right) f_{R_{\mathrm{a}}^{2}(x)}(c) d x \\
= & \frac{1}{2^{N}}\left[1-\sqrt{\frac{S N R_{0}}{S N R_{0}+2}}\right]^{M} \sum_{i n-0}^{M-1} \frac{1}{2^{+n}}\binom{M-1+m}{m} . \\
& {\left[1-\sqrt{\frac{S N R_{0}}{S N R_{0}+2}}\right]^{+n} } \tag{33}
\end{align*}
$$

4.4. Comparing Different Modulations

In order to have a fait compaison among different modulations on the basis of the avecage SNR, we also have to impore equal bit tate and equal bandwidth constraints. Consideting two modulation sehemes 1 and 2 with bit duations $T^{(1)}, T^{(2)}$, chip dutations $T_{c}^{(1)}, T_{c}^{(2)}$, and having homalized ${ }^{1}$ power bandwhith hoceupahcies $B^{(1)}$ and $B^{(2)}$, we need

$$
\frac{1}{T^{(1)}}=\frac{1}{T^{(2)}} \text { and } \frac{B^{(1)}}{T_{\varepsilon}^{(1)}}=\frac{B^{(2)}}{T_{\varepsilon}^{(2)}}
$$

which implies that

$$
\begin{equation*}
N^{(1)} B^{[1]}=N^{(2)} B^{(2)} \tag{35}
\end{equation*}
$$

To delemine which system performs belter, we compare the tatios $M_{c}^{(1)} / N^{(1)}$ and $M_{c}^{(2)} / N^{(2)}$. Recall that the nomalized interference factor M_{c} is only a function of the chip wavefom shape, and is independent of its duration $\boldsymbol{T}_{\boldsymbol{c}}$. The number \boldsymbol{N} however would have to be changed with chip duation T_{s} in onder to satisfy (35). Consideting for simplicity the asymptotic SNR $\left(N_{0}=0\right)$, it then follows that the dB gain (or loss) of System 2 over System 1 is

$$
\begin{equation*}
G_{X \mid \Omega}=10 \log _{10}\left[\frac{B^{(1)} M_{\varepsilon}^{(1)}}{B^{(2)} M_{\varepsilon}^{(2)}}\right] \mathrm{dB} . \tag{36}
\end{equation*}
$$

[^0]The above equation demonstiater the imparance of the nomalized $B M_{c}$ patameler as a single figute for compating the performance of different chip pulsers in DS-CDMA. The larger this produet the higher the SNR gain and the better the evior petformance, or equivalently, the higher the system capacity tas measuted by the number \boldsymbol{K} of total active use 1) for a given ertor performance level.

S. NUMERICAL RESULTS

In this setion, we presem numetical iesults to illustiate the performance of the receiver sturutures dissused above, and we also give futher comparisons among differem modulations which inel ude, in addition to standard OQPSK with a retangular chippolse, Minimum Shifl Keying (MSK) with a half-sine chip pulse $\psi_{c}(t)=$ $\sqrt{2}$ sin $\left(\frac{\pi t}{T_{c}}\right)$, Sinwsoidal Frequency Shifl Keying (SESK) with a $\psi_{c}(t)=\sqrt{2} \sin \left(\frac{\pi t}{T_{c}}-\frac{1}{4} \sin \left(\frac{4 \pi t}{T_{c}}\right)\right)$, and Time-Domain RaisedCosine shaped OQPSK with $\psi_{c}(t)=\sqrt{2 / 3}\left(1-\cos \left(\frac{2 \pi t}{T}\right)\right)$.

Fig. [l) shows the example of MSK for a chanhel with $L=7$ paths. $N=127 \mathrm{etrips}$ bit. The bit ecroct probability is shown as a function of the number of usets for all thiee receiver types with incteasing ditersity oders (a speending fielor $N=127$ is used). Also shown on the same plot is the performance of the corvelation receiver in the absence of fading. As enpected, severe degradation is caused by multipath fading and the pelformane of the corvelation teeeiver (with no diversity) is quite poor. With seleation diversity, theve is a modeat impuovement in perfomance as the diversity order M ineteases, and the bit error level is only tolerable When the number of users is small. Notice also that he inevemental improvement in petformance tends to saturate with incteasing \mathbf{M}. On the other hand, maximum tatio combining perfoums subsiantially better and steadily imporves with inereasing M tand would asymptotically approach the unfaded limiting case [10]).

Consideting the relative ector performance of OQPSK, MSK, SESK and TDRC, the diversity oder is fined al $M=4$ for a chanhel with $L=7$ equal-stiength paths. An equal bit cate and equal 99.9% bandwidth ∞ ecupancy constrai hts ate also mai mained imposed. The number N of chips/bit is sel to 63 for OQPSK as a reference and adjusted according to (35) for the other modulations, theveby tesulting in $N^{\text {bisk }}=662, \mathrm{~N}^{\text {sesk }}=645$ and $\mathrm{N}^{\text {Toxc }}=$ 1074. As an example with MRC, Figule (2) shows the bit ection probability versus the number of users \boldsymbol{K}, and it is clearly seen that OQPSK is largely outperformed by the other modulations, mainly beenuse of its laige BM. pioduc.

Fihally, we give additional compatisons with incteasing diversity orders in Ergures (3) and (+). It is seen that, in the case of seleation diversity, incueasing the oder M quickly teaches a point of diminishing telurns and the eviox probability stauts saturating at a given floor. For maximum tatio combiting however, this is hot the case and the error probability continuer deereasi ing with higher: diversity. ti is also noticeable that the telative gaps in performance between the different modulations get incteasingly latger as the divelsity ader M incueases.

6. CONCLUSIONS

The paper addressed the ertor performathe analysis of selection diversity and maximum tatio combi hing over Rayleigh fading chanhels when the multiple access signalling schemes use OQPSKmodulated CDMA with tandom sighature sequences and arbitial-
ilyshaped chip waveform pulsers. Closed-form bit error probability expleasions were detived based on the use of the Standaud Gaussian Approximation method, which is found to have encellent aceuracy for OQPSK-lype spieading.

Selection diversity was found to yield modest improvements in ertor performance even with a high diversily order: Another disadvantage of selection diversity is that the bit error probability improved al a diminishing cate for inereasing diversity oders. Maximum tatio combining, on the other hand, offered much better performance, without suffering from the diminishing teturns problem of selection diversity.

Vatious examples that illustated telative performance compaisons among different modulation types were also given, and it Was the best ecror performance is acheved by chip waveforms that have a smallest homalized bandwidth-mean-squated-conelation product.

7. REFERENCES

[1] M. B. Putsey, "Spiead-Spectum Multiple-Access Commurications," in Mair-User Communications. CLSM Coutses and Lealuer No. 365, B. Longo, editor, Spuinglec-Verlag, Vienna-New York, 1981.
[2] G. L. Tuin, "Lntioduction to Spiead-Spertum Antimultipath Teahniques and their Application to Ulban Digital Radio," Proceedings of the IEEE. vol. 68, pp 328-353, Maveh 1980.
[3] M. Kavehrad and P. J. MeLane, "Perfomance of Low ComPlexity Channel Coding and Diversity for Spread Spectum in Lndoor Wiveleas Communication," ATET Technical Journaf. Vol. 6t, No. 8, Oetober 1985.
[+] E. A. Geraniotis and M. B. Putsey, "Performance of Coherent Ditert-Sequenee Spread-Spertrum Communications over: Spezular Multipath Eading Channels," HEEE Transas rions on Canmumications. vol. COM-33, pp. 502-508, Juhe 1985.
[5] J. S. Lehnen and M. B. Pursley, "Erior Piobabilities for Binary Diteel-Sequence Spread-Spertum Communications with Random Sighature Sequences," HEEE Transactions on Communicarions. Vol. COM-35, pp. 87-98, Jahualy 1987.
[6] C. E. Sundberg, "Eriox Probability of Partial Resporse Continuous Phase Modulation with Coherent MSK-lype Receiver, Diversity, and Slow Rayleigh Fading in Gaussian Noise," Belf Syss. Tech. Jour. vol. 61, No. 8, pp. 1933-1963, Otober 1982.
[7] W.E. Stark, Private Commumicarion. University of Miehigan.
[8] M. A. Landolsi and W. E. Slark "On the Accuracy of Gaussian Apporximations in the Error Ahalysis of DS-CDMA with OQPSK Modulation," to appear in the JEEE Transacrions on Combnunications. December 2002 issue.
[9] J. G. Pionkis, Digital Compnumicarions. McGraw-Hill, New York, 1995.
[10] W. C. Jakes, Microware Mobile Commumicarions. Wiley, New York, 197+.

Ege. 1. Compatison of reeiver structures: Cortelation Receiver with no diversily (CR), Selection Diversity (SD), and Maximum Ratio Combining (MRC). Results for MSK with $N=127$. No theimal noise $\left(N_{0}=0\right)$. Number of paths $L=7$.

Fg. 2. Perfomanee with maximum tatio combining. Bit entor probability vs. humber of users for different modulation schemes. Parameleı: $\left(N_{0}=0\right)$, number of paths $L=7$, diversity onder $M=4$.

Eig 3. Selection diversity I_{5} vs. diversity order M. Paramelen: $E_{h} / N_{0}=30 \mathrm{~dB}$, number of useıs $K=10$, number of paths $L=15$, mean palh stitength $2 \rho_{0}=1 / 15$.

Fig 4. Maximum ratio combining P_{b} w. diversity order M. Patalnelets: $E_{b} / N_{0}=30 \mathrm{~dB}$, number of uses $\boldsymbol{K}=\mathbf{1 0}$, number of palts $L=15$, mean pait situengh $2 \rho_{0}=1 / 15$.

[^0]: ${ }^{\mathrm{I}}$ based on the in-band power bandwidth occupancies $W^{(1)}$ and $w^{(2)}$. nocualized by the respective chip rates $1 / T_{c}^{(1)}$ and $1 / X_{c}^{(2)}$.

