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Abstract - In this paper, we introduce an adaptive al-
gorithm based on learning automata for determination
of number of guard channels. This algorithm adapts the
number of guard channels in a cell dynamically based
on the current estimate of dropping probability of hand-
off calls. The proposed algorithm minimizes the blocking
probability of new calls subject to the constraint on the
dropping probability of handoff calls. In the proposed
policy, a learning automaton is used to find the optimal
number of guard channels. The proposed algorithm does
not need any a priori information about the input traffic
of the cellular network. The simulation results show that
the performance of this algorithm is close to the perfor-
mance of guard channel policy under the low handoff
traffic conditions for which we need to know all traffic
parameters in advance.

I. INTRODUCTION

In the last decade, there is an increase in the pop-
ularity of mobile computing systems, which results an
increase for channel demands. Since number of allocated
channels for this purpose is limited, the cellular and mi-
cro cellular networks are introduced, in which the service
area is partitioned into regions called cells. Introduction
of micro cellular networks leads to improvement of net-
work capacity but increases the expected rate of hand-
off. When a mobile host moves across the cell boundary,
handoff is required. If an idle channel is available in the
destination cell, then the handoff call is resumed; oth-
erwise the handoff call is dropped. The dropping prob-
ability of handoff calls (By,) and the blocking probabil-
ity of new calls (B,) are important quality of service
(QoS) measures of the cellular networks. Since the dis-
connection in the middle of a call is highly undesirable,
dropping of handoff calls is more serious than blocking
of new calls. In order to control the dropping probability
of handoff calls and the blocking probability of new calls,
the call admission policies are introduced. The call ad-
mission policies determine whether a new call should be
admitted or blocked. Both blocking probability of new

calls (B,,) and dropping probability of handoff calls (B},)
are affected by call admission control policies. Blocking
more new calls generally improves dropping probability
of handoff calls and admitting more new calls generally
improves blocking probability of new calls.

The simplest call admission policy is called guard
channel (GC) policy [1]. Suppose that the given cell has
C full duplex channels. The guard channel policy re-
serves a subset of channels allocated to a cell for sole use
of handoff calls (say C' —T channels). These channels are
called guard channels. Whenever the channel occupancy
exceeds the certain threshold T, the guard channel pol-
icy rejects new calls until the channel occupancy goes
below the threshold. The guard channel policy accepts
handoff calls as long as channels are available. The de-
scription of guard channel policy is given algorithmically
in figure 1.

if (HANDOFF CALL) then
if ¢(t) < C ) then
accept call
else
reject call
end if
end if

if (NEW CALL) then
if (c(t) < C —T) then
accept call
else
reject call
end if
end if

Fig. 1. Guard channel policy

As the number of guard channels increased, the drop-
ping probability of handoff calls will be reduced while the
blocking probability of new calls will be increased [2]. It
has been shown that there is an optimal threshold 7™ in



which the blocking probability of new calls is minimized
subject to the hard constraint on the dropping proba-
bility of handoff calls [3]. Algorithms for finding the op-
timal number of guard channels are given in [3, 4]. The
GC policy reserves an integral number of guard channels
for handoff calls. If the parameter By, is considered, the
guard channel policy gives very good performance, but
the parameter B,, is degraded to great extent. In order
to have more control on blocking probability of new calls
and the dropping probability of handoff calls, the lim-
ited fractional guard channel policy (LFG) is introduced
[3]. In LFG policy, when the system is in state T, new
calls are accepted with probability 7. From states 7'+ 1
to C, only handoff calls are accepted and in states 0 to
T — 1, both types of calls are accepted. The description
of limited fractional guard channel policy is given algo-
rithmically in figure 2.

if (HANDOFF CALL) then
if ¢(t) < C ) then
accept call
else
reject call
end if
end if

if (NEW CALL) then
if (¢(t) < C — T and rand(0,1) < w) then
accept call
else
reject call

end if
end if

Fig. 2. Limited fractional guard channel policy

It has been shown that there is an optimal threshold
T* and an optimal value of #* for which the blocking
probability of new calls is minimized subject to the hard
constraint on the dropping probability of handoff calls
[3]. The algorithm for finding such optimal parameters
is given in [3]. These algorithms assume that the input
traffic is a stationary process with known parameters.
Since the input traffic is not a stationary process and its
parameters are unknown a priori, the optimal number
of guard channels is different for different traffic. In such
cases the dynamic guard channel policy can be used.
In dynamic guard channel policy, the number of guard
channels varies during the operation of the cellular net-
work.

In [5], a dynamic guard channel algorithm is proposed
in which the number of guard channels in any particular
cell is adjusted with number of ongoing calls in neighbor-
ing cells. Since all ongoing calls in neighboring cells are
potential to handoff, the number of these ongoing calls

determines a current estimate of handoff. In this algo-
rithm, when a new or handoff call arrives at a neigh-
boring cell, the number of guard channels is increased
by a fractional amount and when a cell is completed or
handovers to non-neighboring cells, the number of guard
channels is decreased with the same fractional amount.
This algorithm must have an up to date status of neigh-
boring cells. The transmission of cell’s status leads to loss
of some bandwidth allocated to the user traffic on the
wired-line network. In order to attain reasonable band-
width, the call admission control algorithm must use less
status information.

Learning automaton have been used successfully in
many applications such as telephone and data network
routing [6, 7], solving NP-Complete problems [8, 9], ca-
pacity assignment [10] and neural network engineering
[11, 12, 13, 14] to mention a few. In this paper, we pro-
pose an adaptive algorithm based on learning automata
for determination of number of guard channels. This al-
gorithm uses only the current channel occupancy of the
given cell and dynamically adjusts the number of guard
channels. The proposed algorithm minimizes the block-
ing probability of new calls subject to the constraint
on the dropping probability of handoff calls. Since the
learning automaton starts its learning without any pri-
ori knowledge about its environment, the proposed algo-
rithm does not need any a priori information about input
traffic. One of the most important advantage of the pro-
posed algorithm is that no status information will be ex-
changed between neighboring cells. The exchange of such
status information increase the performance of the pro-
posed algorithm. The simulation results show that the
performance of this algorithm are near to performance of
guard channel policy that knows all traffic parameters.

The rest of this paper is organized as follows: The
learning automata briefly is given in section 2. The pro-
posed learning automata based algorithm for determina-
tion of number of guard channels is presented in section
3. The computer simulations is given in section 4 and
section 5 concludes the paper.

II. LEARNING AUTOMATA

The automata approach to learning involves the de-
termination of an optimal action from a set of allowable
actions. An automaton can be regarded as an abstract
object that has finite number of actions. It selects an ac-
tion from its finite set of actions. This action is applied
to a random environment. Then the environment evalu-
ates the applied action and supplies a grade to action of
automata. The response from environment (i.e. grade of
action) is used by automaton to select its next action.
By continuing this process, the automaton learns to se-



lect an action with best grade. The learning algorithm
is used by automaton to determine the selection of its
next action from the response of environment. The in-
teraction of an automata with its environment is shown
in figure 3.

Environment

Stochastic Automata

Fig. 3. The interaction of automata and its environment

An automaton acting in an unknown random envi-
ronment and improves its performance in some specified
manner, is referred to as learning automata [15]. Envi-
ronment refers to the aggregate of all external conditions
and influences affecting the life and development of an
organism. The mathematical model of a random envi-
ronment is described by triple E = {a, 3, S}, where a =
{a1,09,---,a,} with 2 < r < oo shows a finite set of
inputs applied to the environment, 8 = {81, 82, -, Bm }
or B = {[a,b]} represents the set of outputs of environ-
ment, and S = {s1, 52, - -,5,} denotes the set of penalty
strengths, where s corresponds to the input aj. The
input and output of the environment at discrete time
n (for n = 0,1,2,---) are shown by a(n) and 3(n), re-
spectively, whereas 8(n) is in the interval [0, 1] [15]. The
values of sy, (for k = 1,2,---,r) are unknown. Note that
the {s;} are unknown initially and it is desired that as a
result of the interaction between the automaton and the
environment arrives at the action which presents it with
the minimum penalty response in an expected sense.

The random environment can be classified in various
ways depending on the nature of the vectors S and vector
B. According to the nature of the set S, the random en-
vironment could be classified into two groups: stationary
and non-stationary environments. Based on the nature
of the set 3, the random environment could be classified
in three classes: P-, Q-, and S-model environments.

The output of P-model environment has the form of
B = {B1,P2}. This model of environment evaluates the
action of automata as success or failure. In Q-model en-
vironments, the output S(n) can take a finite number
of values in the interval [0, 1]. In Q-model environment,
response of the environment to the input «; is in the
form of Bi < Bi < --- < Bﬁn In S-model environment,

response (¢ of environment to its input a; lies in the
interval [a, b].

Learning automata can be classified into two main
families: fizxed structure learning automate and wvari-
able structure learning automata [15]. Variable structure
learning automata, is represented by triple < £, a,T >,
where 3 is a set of inputs actions, « is a set of actions,
and T is learning algorithm. The learning algorithm is a
recurrence relation and is used to modify the state prob-
ability vector. It is evident that the crucial factor affect-
ing the performance of the variable structure learning
automata, is learning algorithm. Various learning algo-
rithms have been reported in the literature. Let «; be
the action chosen at time k as a sample realization from
probability distribution p(k). The linear reward-inaction
algorithm (Lg_ ) in P-model environments is one of the
earliest learning schemes and its recurrence equation for
updating action probability vector p is defined as
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if B(k) is zero and p is unchanged if B(k) is one. The
parameter 0 < a < 1 is called step length and deter-
mines the amount of increases (decreases) of the action
probabilities. It has been shown that the Lg_; learning
algorithm is e—optimal.

The Lgi_; scheme can be extended to Q- and S-model
of environments. The Q- and S-model versions of Lg_;
scheme are denoted by SLi_;'. The SLi_; scheme can
be expressed as

pj(n) —a[l = B(n)]p;(n) J#i
pi(n) +a[l = B(n)] X4z pr(n) j =i
(2)
where the action «; is selected at instant of n. The
SLir 1 scheme shares many properties of the Lg ;
scheme, such as absolutely expediency and e—optimality
[16].

pi(n+1)=

II1. The Proposed Algorithm

In this section, we introduce a new learning automata
based algorithm (figure 4) for determination of number
of guard channels when the parameters A,, An, and p
are unknown and possibly time varying. Assume that
the cell has C' full duplex channels. Let the number of
guard channels at time instant ¢ denoted by g(t) is in

! The prefix S in reinforcement schemes, such as in SLg_;,
is used to denote the Q- and S-model versions derived from
P-model schemes.



interval g(t) € [gmin;gmax]; where 0 S 9min S 9max S
C. In the proposed algorithm, each base station has a
learning automaton A with gmax —gmin+1 actions, where
action «; denotes that the base station must use g(t) =
gmin + @; — 1 guard channels. The proposed algorithm
can be described as follows. When a handoff call arrives
at the given cell and a channel is available, then the call
is accepted; otherwise it is dropped. When a new call
arrives at the given cell, learning automaton associated
to the cell selects one of its actions, say a;. If the cell has
at least gmin+; —1 free channels, then the incoming call
is accepted; otherwise it is blocked. Then the base station
computes the current estimate of dropping probability of
handoff calls (By) and then based on this estimation, the
reinforcement signal 8 is computed. The reinforcement
signal is computed by the following expression.

s=v (uﬂ> 3)
Pn

where w is a scaling constant and function ¥(z) : ¢ —
[0,1] is a project function, which maps z into interval
[0,1]. Tt is evident when Bj, is greater than pj, then
reinforcement signal § is large and near to one and hence
the selected action will be penalized. It is evident when
By, is smaller than pp, then reinforcement signal 3 is
small and near to zero and hence the selected action will
be rewarded.

if (HANDOFF CALL) then
if ¢(t) < C' ) then
accept call
else
reject call
end if
end if

if (NEW CALL) then
set g + LA.action ()
if (c(t) < C — g )then
accept call
else
reject call
end if .
set (3« wf—:
Update probability vector p using
B and equation (*).
end if

Fig. 4. Learning automata based algorithm for determina-
tion of number of guard channels

The proposed algorithm requires less resources (band-
width of the wired-line network) than the algorithm
given in [5] for which the status of all neighboring cells
are needed for determination of guard channels. In [5],

status information must be exchanged between neigh-
boring cells in the case of arrival of a call, departure of a
call, and handoff of a call. However, the exchange of sta-
tus information can be used to sped up the convergence
of the proposed algorithm, which results an improvement
of the proposed algorithm. Since the learning automata
begin their learning without a priori knowledge about
its environment, the proposed algorithm does not require
any information about input traffic. Even though the pri-
ori information about input traffic is not needed by the
algorithm, availability of such information may be used
to find a better learning algorithm in order to choose
a better learning algorithm for adaptation of traffic pa-
rameters. The use of a priori information in the proposed
algorithm needs to be investigated. The proposed algo-
rithm at the beginning does not perform well but as it
proceeds, the performance of the algorithm approaches
to its optimal performance. Initially, the proposed guard
channels randomly.

IV. SIMULATION RESULTS

In this section, we compare performance of the guard
channel [1], the limited fractional guard channel [3], and
the dynamic guard channel algorithms proposed in this
paper. The results of simulations are summarized in ta-
ble 1. The simulation is based on the single cell of ho-
mogenous cellular network system. In such network, each
cell has 8 full duplex channels (C = 8). In the sim-
ulations, new call arrival rate is fixed to 30 calls per
minute (A, = 30), channel holding time is set to 6 sec-
onds (#~! = 6), and the handoff call traffic is varied
between 2 calls per minute to 20 calls per minute. The
results listed in table 1 are obtained by averaging 10 runs
from 2,000,000 seconds simulation of each algorithm.
The objective is to minimize the blocking probability of
new calls subject to the constraint that the dropping
probability of handoff calls is less than 0.01. The opti-
mal number of guard channels for guard channel policy
is obtained by algorithm given in [4] and the optimal
parameters of limited fractional guard channel policy is
obtained by algorithm given in [3].

Table 1. Comparison of guard channel policy and the pro-
posed learning automata based algorithm

Guard channel policy| The proposed algorithm
Case|[An B, By, B, B,
1 | 2] 0.063507 0.001525 | 0.065927 0.010747
2 | 4| 0.077080 0.003538 | 0.095552 0.011314
3 | 6| 0.091013 0.005923 | 0.127434 0.011180
4 | 8| 0.105002 0.008380 | 0.150670 0.011930
5 |10| 0.120260 0.011877 | 0.191515 0.011240
6 [12| 0.231559  0.004309 | 0.209537 0.014020
7 |14| 0.255346  0.005975 | 0.227480 0.017515
8 |[16| 0.275489  0.007999 | 0.243930 0.021078
9 |[18| 0.296834 0.010518 | 0.259754 0.025059
10 [20| 0.459183  0.006081 | 0.278590 0.029722



By inspecting table 1, it is evident that the perfor-
mance of the proposed learning automata based algo-
rithm for determination of number of guard channels is
close to the performance of guard channel policy under
the low handoff/new traffic ratio. One reason for the dif-
ference in performances of the guard channel policy and
the proposed policy is due to the fact that transient be-
havior of the proposed algorithm. Since, the performance
parameters (the blocking probability of new calls and the
dropping probability of handoff calls) in the early stages
of simulation are far from their desire value, they affect
the long-time calculation of the performance parame-
ters. However, such effect can be removed by excluding
the transient behaviors of the proposed algorithm. For
more experimentation refer to [17].

V. CONCLUSIONS

In this paper, we introduced an adaptive algorithm
based on learning automata for determination of num-
ber of guard channels. The proposed algorithm adapts
the number of guard channels in a cell using current es-
timate of dropping probability of handoff calls. This al-
gorithm minimizes the blocking probability of new calls
subject to the constraint on the dropping probability
of handoff calls. The simulation results show that the
performance of this algorithm is very close to the per-
formance of guard channel policy that knows all traffic
parameters in advance under the low handoff/new traffic
ratio. The proposed policy has three advantages: 1) does
not not require any exchange of information between the
neighboring cells leading to less network overheads. 2)
does not need any a priori information about the input
traffic. 3) the algorithms works for time varying traffics.
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