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ABSTRACT

Diversity transmission at the base station is an effective technique
to combat adverse effects of fading. This is suggested as an al-
ternative to diversity at the terminal, thereby reducing the imple-
mentation complexity. In this paper, we present a transmission
scheme that combines space-time block coding over frequency
selective channels with single carrier frequency domain interfer-
ence suppression and equalization. It is shown that this scheme
will provide the diversity benefit of both the frequency selec-
tive channel and the space-time block code while completely
suppressing the interference from another co-channel transmit-
ter that occupies exactly the same channel (time & frequency) as
the desired transmitter.

1. INTRODUCTION

Recently, there have been a number of proposals that use multiple
antennas at the transmitter with the appropriate signal process-
ing to jointly combat the above wireless channel impairments and
provide antenna diversity for the downlink while placing most
of the diversity burden on the base station. Substantial benefits
can be achieved by using channel codes that are specifically de-
signed taken into account multiple transmit antennas. The first
bandwidth efficient transmit diversity scheme was proposed by
Wittneben [1] and it included the transmit diversity scheme of
[2] as a special case. In [3] space-time trellis codes were in-
troduced, where a general theory for design of combined trellis
coding and modulation for transmit diversity is proposed. An-
other approach for space-time coding, space-time block codes,
was introduced in [4] and later generalized in [5]. Space-time
codes have been recently adopted in third generation cellular
standard (e.g. CDMA-2000 [6] and W-CDMA [7]). A scheme
for combined interference suppression and space-time block de-
coding based on Alamouti scheme in [4] was presented in [8]
and later generalized in [9]

In this paper we present a combined frequency domain equal-
ization (FDE) and interference suppression (IS) technique for
space-time block coded (STBC) transmission over frequency se-

the STBC for flat fading channels, the frequency selective chan-
nel model, and the FDE technique for single input single output
channels. Next, we describe a STBC transmission scheme for
frequency selective channel and FDE in Section 3. Then, in Sec-
tion 4, we present a combined FDE and IS technique for STBC.
In Section 5 we present a simulation example for the proposed
scheme.

2. PRELIMINARIES

2.1. SPACE-TIME BLOCK CODING

In [4], Alamouti presented a transmit diversity scheme using a
space-time block coding approach with two transmit antennas.
This approach was designed for flat channels. In addition, it
was assumed that the channel will remain constant over at least
consecutive symbols. In this scheme, the original symbol se-
quence x(n) is divided into blocks of two symbols each xk(n)

and xk+1(n). Then, every pair of symbols is mapped according
to (we will drop the index n for simplicity of notation)[

xk

xk+1

]
−→

[
xk −xk+1
x∗
k+1 x∗

k

]
= X (1)

In the first symbol period, the first column ofX is transmitted
from antenna 1 and antenna 2, respectively. The corresponding
received signal is

rk = xkh1 + x∗
k+1h2 + nk (2)

At the next symbol period, the second column ofX is transmitted
from antenna 1 and antenna 2 in a similar fashion such that the
corresponding received signal is

rk+1 = −xk+1h1 + x∗
k h2 + nk+1 (3)

In (2) and (3), h1 and h2 represent the complex gains of the
channel (which is assumed there to be flat) between the first and
second transmit antennas and the receive antenna, respectively.
Equations (2) and (3) can be put in a matrix form as follows

rk =
[

rk
r∗

1

]
=

[
h1 −h2
h∗

2 h∗
1

] [
xk

x∗
1

]
+

[
nk

n∗
1

]
(4)



diversity scheme is to multiply rk by H ∗, which turns out to be
the matched filter receiver. As pointed out earlier, this scheme
will achieve the maximum possible diversity order over a flat
channel (which is two in this case). Despite of the simplicity of
the decoding processing when used over flat channel, using this
scheme in its present form over a frequency selective channel
poses an extremely hard equalization problem due to the non-
linear complex conjugate operation used in generating the code
and in the decoding process . To enable the use of this scheme
over frequency selective the channel, the above STBC scheme
was first modified in [10] for use in WCDMA, in [11] for use
with time domain equalization methods and in [12] for use with
frequency domain equalization (FDE) [13, 14]. Below we will
describe a scheme for use with FDE that combines equalization,
ST decoding, and interference suppression.

2.2. FREQUENCY SELECTIVE CHANNEL AND DATA
MODEL
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Figure 1: Block Transmission

We consider a burst of N information symbols at time k,
xk(0), xk(1), · · · , xk(N − 1) that is transmitted over an additive
white Gaussian noise (AWGN) and frequency selective channel
h(t) with memory L. Let

h(k) =
L∑

l=0

hlδ(k − l) (6)

be discrete time impulse response of the equivalent channel that
includes the effects of the wireless propagation channel h(t), the
pulse shaping function g(t), and the receive filter impulse f (t).
The channel complex tap gains hl, l = 0, 1, · · · , L are mod-
elled as Gaussian random variables with zero mean and variance
σ 2

l . Without loss of generality, another important assumption
we make here is that the complex tap gains are invariant within
a data burst, although they may be varying from burst to burst.
This assumption relaxes the necessity of time-varying channel
models and simplifies the analysis. In cellular systems such as
GSM and W-CDMA, the length of a data burst is about of 0.58
and 0.67 ms, respectively. Compared to the coherence time of
the channel at 60 MPH mobile velocity and 1.9 GHz carrier fre-
quency, which is approximately 5.6 ms, the burst length is small
enough such that the block time-invariant channel model is valid.

We assume that each burst is appended with a cyclic prefix
of length L. This is done to eliminate the inter-burst interfer-

remaining received samples as

yk = H · xk + nk (7)

where xk = [xk(N − 1), xk(N − 2), · · · , xk(0)]T is the input
symbols vector which is assumed to be zero mean with co-
variance Es · I (i.e. the input symbols are assumed to be in-
dependent and identically distributed (i.i.d)), yk = [yk(N −
1), yk(N − 2), · · · , yk(0)]T is the received signal vector, and
nk = [nk(N − 1), nk(N − 2), · · · , nk(0)]T is the additive Gaus-
sian noise vector which is assumed to be zero mean with covari-
ance Rn. If the noise vector is also white then Rn = N o · I
1. Es and No are the energy per symbol and the noise power
spectral density, respectively. Note that (.)T and (.)∗ donate the
transpose and the conjugate transpose, respectively.

In the above setup,N×N channel matrix H is a circulant ma-
trix [15-17]. A basic result from matrix theory is that a circulant
matrix will have the eigenvalue decomposition

H = Q∗�hQ (8)

where Q is the discrete Fourier transform matrix (DFT) whose
(i, n) element is

Q(i, n) = 1√
N

e−j2πin/N 0 ≤ i, n ≤ N − 1

and �h is the diagonal eigenvalue matrix whose diagonal is the
N point DFT of h0, h1, · · · , hL [15-17].

2.3. SINGLE CARRIER FREQUENCY DOMAIN
EQUALIZER (FDE)

Let us consider the DFT of the received signal vector yk

Yk = DFT (yk) = Qyk

= �hQxk + Qnk = �hXk + Nk (9)

where Xk is DFT of the input symbols vector and Nk is the DFT
of the noise vector. Here we used the fact that QQ∗ = I since
Q is orthonormal. In general, the noise vector Nk will have a
covariance R̃n = QRnQ

∗ and when the noise sequence is white,
the covariance matrix of the noise will be No · I , i.e. the noise
vector is still white. The single carrier (SC) FDE is the N × N

matrix filter W that will minimize the mean-squared error (MSE)

e2 = E

{
||W ∗Yk − Xk||2

}
(10)

It can be shown that the MMSE SC-FDE is given by

W = (
�hRxx�

∗
h + Rn

)−1
�hRxx (11)

1the case when the noise vector is not white will be useful when considering
colored co-channel interference
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Figure 2: FFT Based Single Carrier MMSE-FDE

Where Rxx = E
{
XkX

∗
k

}
and Rn = E

{
NkN

∗
k

}
. Using the

assumptions that the input symbols vector and the noise vector
are white, the MMSE SC-FDE matrix filter W reduces to:

W =
(

�h�
∗
h + 1

ρ
· I

)−1

�h (12)

where ρ = Es

No
is the signal to noise ratio (SNR).We immediately

notice that, in this case, the matrix filter W is a diagonal matrix
whose (i, i) element is given by

W (i, i) = �h(i, i)

|�h(i, i)|2 + 1
ρ

(13)

The output of MMSE SC-FDE defined as Zk = W ∗Yk is trans-
formed back to the time domain (by applying inverse DFT matrix
Q∗ to yield the soft decisions x̂k for the input symbols vector xk

x̂k = Q∗Zk

= Q∗�∗
h

(
�h�

∗
h + 1

ρ
· I

)−1

�hQxk + vk (14)

where vk = QW ∗Nk is the output noise vector. Final decision
can be made on the transmitted symbols by feeding the soft deci-
sions x̂k to a slicer in the case of uncoded transmission, otherwise
they are fed into channel decoder in case of coded transmission.
Note that when the number of symbols in each block N is a
power of 2, the DFT can be efficiently implemented using the
Fast Fourier Transform (FFT). Figure 2 shows and FFT based
implementation for the FDE.

3. SPACE-TIME BLOCK CODING FOR FREQUENCY
SELECTIVE CHANNELS

We assume that the transmitter is equipped with two transmit
antennas, and consider two consecutive blocks xk and xk+1 of
N symbols each that need to be transmitted . Let xk(n) =
xk(n), n = 0, 1, · · · , N − 1, the n-th symbol of the k-th block.
Given xk and xk+1, we define two complementary sequences x̃k

and x̃k+1 as

x̃k(n) = x̄k(N − n) 0 ≤ n ≤ N − 1 (15)

x̃k+1(n) = x̄k+1(N − n) 0 ≤ n ≤ N − 1 (16)

where ¯(.)denotes the complex conjugate operation for scalars and
element by element complex conjugate for vectors and matrices.
Hence ˜ and ˜ are a time reversed and element-by-element
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time k, xk is appended with the cyclic prefix and transmitted from
antenna 1 and −x̃k+1 is appended with the cyclic prefix and trans-
mitted from antenna 2. At time k + 1, xk+1 is appended with the
cyclic prefix and transmitted from antenna 1 and x̃k is appended
with the cyclic prefix and transmitted from antenna 2. Without
loss of generality, let us assume that the receiver has one receive
antenna and let H1 and H2 be the channel matrices as defined
in (??) from transmit antenna 1 and transmit antenna 2 to the
receive antenna, respectively. Note that both H1 and H2 are also
cyclic and hence they will have eigenvalue decomposition sim-
ilar to that in (8). This transmission scheme is shown in Figure
3. Then, we can write the received signal vectors corresponding
to the block transmissions at times k and k + 1 as

yk = H1xk − H2x̃k+1 + nk (17)

yk+1 = H1xk+1 + H2x̃k + nk+1 (18)

Next, we consider the DFT of the received signal vectors yk and
yk+1

Yk = Qyk = �1Xk − �2X̄k+1 + Nk (19)

Yk+1 = Qyk+1 = �1Xk+1 + �2X̄k + Nk+1 (20)

where �1 and �2 are the DFT of channel impulse response from
transmit antenna 1 and 2 to the receive antenna, respectively,
Xk = DFT(xk), and Nk = DFT(nk). Here we used the DFT



S
�=

[
Yk

Ȳk+1

]
=

[
�1 −�2
�∗

2 �∗
1

] [
Xk

X̄k+1

]
+

[
Nk

N̄k+1

]
�= � ·X +N (21)

As before, using the assumptions that the input symbols vec-
tor and the noise vector are weight, we can easily show that the
combined MMSE SC-FDE / ST Decoder matrix filterW in this
case is

W =
(

��∗ + 1

ρ
· I

)−1

� (22)

Let D = �1�
∗
1 + �2�

∗
2. It is straightforward to see that D is

an N × N diagonal matrix whose (i, i) element dii is given by
|�1(i, i)|2 + |�2(i, i)|2. Also, let and D̃ = D + 1

ρ
· I . We can

easily verify that D̃−1�j = �j D̃
−1 and D̃−1�∗

j = �∗
j D̃

−1.
Hence, we can rewrite W as

W =
[

D̃−1 0
0 D̃−1

] [
�1 −�2
�∗

2 �∗
1

]
(23)

=
[

�1 −�2
�∗

2 �∗
1

] [
D̃−1 0

0 D̃−1

]
(24)

= Wc ·We (25)

Let us consider the output of the matrix filter

Z
�=

[
Zk

Z̄k+1

]
= W∗ · S

=
[

D̃−1D 0
0 D̃−1D

] [
Xk

X̄k+1

]
+

[
Vk

V̄k+1

]
(26)

The output vector Z is transformed back to the time domain via
inverse DFT to yield[

x̂k

˜̂xk+1

]
�=

[
Q∗Zk

Q∗Z̄k+1

]

=
[

Q∗D̃−1DQ

Q∗D̃−1DQ

] [
xk

x̃k+1

]
+

[
ñk

ñk+1

]
(27)

In the time domain, x̂k is the soft-decision for xk and ˜̂xk+1 is
time reversed an complex conjugated to give the soft decision
for xk+1. These soft decisions can be either applied to a slicer
to get final (hard) decisions or to the channel decoder in case of
coded transmission. We can easily verify that a two fold diver-
sity benefit is provided by this scheme. Figure 4 shows a block
diagram of the receiver in this case. We make the following ob-
servations. By considering the matrix filter in (25), we notice that
it is split into two parts. The first part Wc represents the decod-
ing operation of the space-time block code, similar to that of the
original Alamouti scheme [4]. The second part We represents
the MMSE FDE part similar to that in [12]. We make another
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Figure 5: Block Space-Time Coding for frequency selective
Channels with Parallel Transmission

Yk+1,n (the n-th DFT point for the N point DFT Of Yk and Yk+1,
respectively). These can be written as S(n) = [YkYk+1]T

S(n) =
[

�1(n) −�2(n)

�∗
2(n) �∗

1(n)

] [
Xk,n

X̄k+1,n

]
+

[
Nk,n

N̄k+1,n

]
(28)

This looks exactly like the originalAlamouti scheme in [4] except
that the spaced-time block coding is now done in the frequency
domain. We now, extend these results to the case when co-
channel interference exist.

4. COMBINED FD EQUALIZATION AND
INTERFERENCE SUPPRESSION

We now consider the scenario where two co-channel users or
transmitters simultaneously transmit signals using the transmis-
sion scheme described in the previous section. Figure 5 shows
a block diagram for this case. Without loss of generality, let
x1,k, x2,k denote the input information sequence to the first and
second transmitters, respectively. Each information sequence, is
block encoded and formatted in the same manner as described in
the previous section. We also assume that the receiver is equipped
with two receive antennas (extending this to the case where more
than one receive antenna is straight forward). Then, we can write
the DFT of the received signal at antenna j, j = 1, 2 due to the
block transmissions from transmitter 1 and 2 at times k and k+1
as

Sj
�=

[
Yj,k

Ȳj,k+1

]
=

[
�1j −�2j

�∗
2j �∗

1j

] [
X1,k

X̄1,k+1

]
+

[
L1j −L2j

L∗
2j L∗

1j

] [
X2,k

X̄2,k+1

]
+

[
N1,k

N̄2,k+1

]
(29)

�= �j ·X1 + Lj ·X2 +Nj j = 1, 2 (30)

where, as before, �i,j is a diagonal matrix whose diagonal
elements are the DFT of the channel impulse response from first



ments are the DFT of the channel impulse response from second
user transmit antenna i, i = 1, 2 to receive antenna j , j = 1, 2.
These two equations can be put in a matrix form[

S1
S2

]
=

[
�1 L1
�2 L2

] [ X1
X2

]
+

[ N1
N2

]
(31)

Now, we make the following observations will be useful in deriv-
ing the combined FD equalizer/interference suppression filter:

• The matrix �j is orthogonal, i.e.

Cj = �∗
j �j =

[
Dj 0
0 Dj

]
(32)

where Dj = �∗
1j�1j + �∗

2j�2j is and N × N diagonal

matrix whose i-th element is |�1j (i, i)|2 + |�2j (i, i)|2.

• The matrix Lj is orthogonal, i.e.

Ej = L∗
jLj =

[
Fj 0
0 Fj

]
(33)

where Fj = L∗
1jL1j + L∗

2jL2j is and N × N diagonal

matrix whose i-th element is |L1j (i, i)|2 + |L2j (i, i)|2.

• The matrices A = �1�
∗
2 and B = L1L

∗
2 are orthogonal.

That is

AA∗ = �1�
∗
2�2�

∗
1 =

[
D� 0
0 D�

]
(34)

BB∗ = L1L
∗
2L2L

∗
1 =

[
FL 0
0 FL

]
(35)

(36)

where D� is an N × N diagonal matrix whose (i, i) entry
is (|�12(i, i)|2 + |�22(i, i)|2)(|�11(i, i)|2 + |�21(i, i)|2)
and FL is an N × N diagonal matrix whose (i, i) entry is
(|L12(i, i)|2 + |L22(i, i)|2)(|L11(i, i)|2 + |L21(i, i)|2)

• Moreover, A and B have the same structure, and hence
A+B will also have the same structure ( we will omit the
proof for this claim here for lack of space, although it is
straightforward proof)

Now define

Rj = Cj + Ej j = 1, 2 and � = A + B

4.1. MMSE SC-FD EQUALIZER/INTERFERENCE
SUPPRESSION FILTER

As before, here we want to find two 4N × 4N matrix filter W1
and W2 such that the mean squared errors (MMSE)

e2
1 = E

{∣∣∣∣W∗
1 ·

[
S1
S2

]
−X1

∣∣∣∣
2
}

(37)
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Figure 6: Block Space-Time Coding for frequency selective
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are minimized. Again, it is easy to show that the matrix filters
W1 and W2 are given by

W1 =
[

R1 + 1
ρ
I �

�∗ R2 + 1
ρ
I

]−1 [
�1
�2

]
(39)

W2 =
[

R1 + 1
ρ
I �

�∗ R2 + 1
ρ
I

]−1 [
L1
L2

]
(40)

Let

Z1 = W∗
1

[
S1
S2

]
=

[
Z1,k

Z1,k+1

]
(41)

The vector Z1,k is transformed back to the time domain via in-
verse DFT to yield the soft decisions x̂1,k = Q∗Z1,k . Similarly,
The vector Z1,k+1 is transformed back to the time domain via
inverse DFT to yield the soft decisions ˜̂x1,k+1 = Q∗Z1,k+1 (the
time reversed and complex conjugated soft decisions for x1,k+1).
The soft decisions for x2,k and x2,k+1 are obtained in a similar
fashion. Figure 6 shows a block diagram for the overall receiver
in this case.

We will state without proof that the columns matrix filters
W1 and W2 are orthogonal, that is

W∗
1W1 = �W1 · I and W∗

2W2 = �W2 · I (42)

The structure of the matrices Cj , Ej , A, andB can be used to
efficiently compute the 4N × 4N matrix inverse in the above
solutions ( (39) and (40)) for W1 and W2. Nevertheless, for
moderate values for the block size N = 64 and 128 this would be
still a prohibitive complexity (at least from the point of view of the
memory requirement if not the number of operations required).
The next approach, provides a more efficient way to compute the
matrix filters W1 and W2.

5. SIMULATION RESULTS

In this section, we present a simulation example (more simulation
results will be included in the final submission) for the combined
FDE and interference suppression scheme for space-time block
coding described above. In our simulations, we assumed a basic



Gaussian pulse shape with 2 samples per baud (the Gaussian
pulse was truncated to ±2 symbols for pulse shaping and ideal
low pass filtering was assumed at the receiver. The overall digital
FIR channel for a typical urban channel at 3 km/h (TU3) and the
linearized Gaussian pulse shaping function will have, in general,
5 taps. However, the 5th tap will have an average energy of -50
dB compared to the tap at delay 0. In our simulations, we ignored
this tap and assumed that the channel has 4 taps only as it will
have very little effect on the performance. We used a basic slot
structure that consisted of 12 training symbols followed by two
block each has 64 data symbols (thus the DFT will be a 64 point
DFT) and 4 cyclic prefix symbols.

Figure 7 shows the bit error probability as a function of the
symbol energy to noise ratio ρ. We show the performance for the
case of only one transmitter and one receive antennas and two
transmitter and two receive antennas with the combined equal-
ization and interference suppression technique described above.
We can easily see that the scheme described above is effective in
eliminating the interference. In fact the performance is slightly
better due to the MMSE nature of the approach.

6. SUMMARY

In this paper we presented a combined frequency domain equal-
ization and interference suppression technique for space-time
block coded transmission over frequency selective channels. Re-
sults show that with a additional receive antenna we can perfectly
suppress another space-time user while maintaining the benefit
of the space-time block coding transmission.

BER of combined FDE and Interference Suppression for STBC 
for EDGE Signaling over a TU3 GSM Channel
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Figure 7: BER of combined FDE and Interference Suppression
for STBC for EDGE Signaling over a TU3 GSM Channel
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