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Abstract 
In this paper, an L2-gap metric identification algorithm is proposed. The algorithm uses a set of frequency 
response samples to come up with rational models so that the L2-gap between the observations and the 
identified model is minimized. Each iteration of the algorithm involves solving a weighted least squares 
approximation problem. Illustrative examples are provided. 
 

1. Notation 
L� denotes the space of functions that are 
essentially bounded on the imaginary axis. RL� is a 
subspace of L� whose elements are rational 
functions. G*(s) denotes complex conjugate 
transpose of G(s), )(Gη denotes the number of open 

right half plane poles of G(s). The winding number 
won(G) denotes the number of counterclockwise 
encirclement around the origin by G(s) evaluated 
on the Nyquist contour.  
 

2. Introduction 
The behavior of two systems connected in 
feedback configuration with identical compensator 
can be very close even for cases where the norm of 
the difference is arbitrarily large. The gap metric 
was introduced by Zames and El-Sakkary[1,2] to 
study approximation and robustness of stability of 
systems with feedback interconnections. It captures 
the closeness of closed loop systems and is 
generally considered   very useful for the analysis 
of uncertain feedback systems. 
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El-Sakkary[2] proposed the following metric for 
single-input-single-output systems 
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This is known as the L2-gap metric and in general it 
is different from the gap metric. This metric can 
also be interpreted as the maximum chordal 
distance  between the projections of the frequency 
responses of the two systems on the Riemann 
sphere [4]. A closely related metric is the v-gap.  
The v-gap metric and  L2-gap metric have identical 
values if  the following conditions are satisfied.  
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The v-gap metric can be defined as  
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Properties of v-gap are extensively studied by 
Vinnicombe[5,6]. 
 
Date and Vinnicombe[7]  proposed an algorithm 
for identification in í-gap metric. The algorithm 
involves solving a series of LMI optimization 
problems followed by Hankel approximation. 
Georgiou et al [8] uses a set of input-output data to 
generate an estimate of the power spectrum and 
uses it to obtain an identified model with an upper 
bound on the L2-gap of the error. The fact that 



under appropriate conditions both the v-gap metric 
and  L2-gap metric have identical values is used to 
obtain the bound in the v-gap. In this paper, we 
propose a new algorithm for the L2-gap metric 
identification. The objective is to identify a linear 
time-invariant SISO system such that the L2-gap 
between the system described by the available data 
and the identified model is reduced. In the 
proposed scheme, the solution is obtained by 
solving a sequence of weighted least squares 
problems where the weight is updated in each 
iteration based on the error in the proceeding 
iteration. 
  
The remaining part of the paper is organized as 
follows. The problem statement is given in Section 
3. The proposed algorithm is presented in Section 4 
and illustrative examples are given in Section 5. 

3. Problem Statement 
In this section, we present the L2-gap metric 
identification problem. The process to be  
identified, G(s),  is assumed to be a single-input-
single-output continuous system. It is also assumed 
that G(s) belongs to 

∞L and is stabilizable by unity 

feedback. The identification problem assumes the 
availability of a set of frequency response samples 
at the  frequencies { }Nωωω ,...,, 21=Ω  which are 

not  necessarily equally spaced. The setΩ  is 
selected so that it covers the frequency intervals of 
interest. The frequency response samples are 
assumed to be corrupted by random noise 
.   

kkk jGP εω += )(   

where   
εεω ≤Ω∈∈ kkNk ,],,1[  

The value of ε  is assumed to be finite. The 
objective is to find an r th order rational transfer 
function Gr such that 
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is minimized. Note that 

SL,δ in equation (3) is a 

lower bound to Lδ defined in equation (1) and they 
become closer as N increases. For the discrete-time 
case, the gap metric in the definition (1) is replaced 
by 
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and the frequency points are selected to be in the 
interval [ ]π2,0 . The frequency response is sampled 
on the unit circle instead of the imaginary axis. 

4. Proposed Algorithm 
In this section, we present a new L2-gap metric 
identification algorithm. The identification 
problem is posed as an approximation problem. 
Looking at the definition (1) of the L2-gap one can 
view that the L2-gap as a weighted L�-norm with 
the frequency weight given by  
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The approximation in the L2-gap can therefore be 
viewed as an approximation in the L�-norm. 
Suboptimal techniques to solve the weighted L�-
approximation such as [9] cannot be used since the 
weight is not known in advance. To solve this 
problem we will use an approach similar to the one 
in [10,11].  The proposed algorithm tries to obtain 
a weight such that the solution of the weighted 
least squares problem is also the optimal solution 
of the L2-gap approximation problem. If the 
optimal L2-gap approximation is known, it is an 
easy exercise to obtain the frequency dependent 
weight so that the solutions of the both 
approximation problems are identical. There is no 
direct way of obtaining the weight. An iterative 
approach is used to obtain the weights. An initial 
guess of weight is taken as  
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obtained by solving the following least squares 
problem.  
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The error is computed using  
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As in the earlier work [10,11],  the new weight is 
obtained as the product of the previous weight and 
the error in the current iteration. The scalar á is 
used to keep the magnitude of the weight within an 



acceptable range (usually between zero and one). 
And the procedure is repeated. The algorithm is 
stopped after a fixed number of iterations and the 
model that gives the least L2-gap    is taken as the 
identified model. A summary of the proposed 
identification algorithm is given below. 
  
Summary of the L2-gap metric identification 
algorithm: 
 
Given the set { }Nωωω ,...,, 21=Ω , { })( kP ω  and  r  

Step 1: Let Ω∈∀== kkU ωω 1)(;0 0l  

Step 2: Solve   the   weighted  least      squares 
approximation 
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Step 3: Update the weight  
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where α  is a scaling factor so that || lU || = 1                
Step 4: 1+= ll ; go to Step 2. 
 
The proposed algorithm is a generalization of the 

Lawson's algorithm for solving ∞l  approximation 
problem. This algorithm reduces to the Lawson's 
algorithm if the approximating function is 
restricted to finite impulse response transfer 
functions. It is known that in the limit the Lawson's 
algorithm converges to the optimal solution of the 

∞l  approximation problem [14]. Unfortunately, 
for the general rational approximation, no proof of 
convergence is available. 

4.1 Identification in the v-Gap Metric 
  
The v-gap metric have more useful properties in 
designing robust control systems.  The above 
algorithm can be used for identification in the v-
gap metric sense. Recall that if the conditions (2) 
and (3) are satisfied then both the L2-gap and v-gap 
have identical values.  
To obtain an identified model in the v-gap metric 
one needs extra assumptions on the number of right 
half plane poles and the winding numbers so that 
the conditions (2) ans (3) can be checked.   
Once, an identified model is obtained, the 
conditions (2) and (3) are checked. If they hold, 
then the identified model is also the best with 

respect to the v-gap metric and the useful 
properties of the v-gap metric can be used. 
 

5. Illustrative Examples 
In this section we consider two examples. In the 
first example we will try to identify first and 
second order models where the data is assumed to 
come from the third order continuous-time system 
used by Date and Vinnicombe[7]. In the second 
example the algorithm is used to identify a second 
order discrete-time system. 

 

5.1 Example 1 
 
The data is assumed to come from the true model 
given by  

                 
12.5647.082s2.4ss
3.251.25s 0.125s
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The frequency response is sampled at frequency 
points that are equally spaced on the logarithmic 
scale between 0.001 and 1000. In the first part a set 
of noise-free samples are obtained with N= 1024. 
The proposed identification algorithm was used to 
identify models of orders 1, 2 and 3. The first and 
second order models are given by 
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and the L2-gap are 0.5486 and 0.0210 respectively. 
The third order model is exactly the same as the 
true model. Thirty iterations was used in obtaining 
the above results.  
 
In the second part of this example, Noise- 
corrupted frequency response samples are used. 
The measurement noise 

kε  is a randomly 

generated complex number such that 1.0≤kε  for 

all k. The proposed algorithm is used to identify 
models of order 1,2 and 3. The identified models 
are  
 

0.00046.0116s0.4138ss
0.00041.2442s0.0803s 0.0004s

)(

6.13320.4751ss
1.20740.0351s0.0060s- 

)(

0.7497s
0.74480.1646s-

)(

23

23

3

2

2

2

1

+++
+++

=

++
++

=

+
+

=

sG

sG

sG

 



and the corresponding L2 –gap of the difference 
between the true and the identified models are 
0.5675, 0.0843 and 0.0703 respectively.  
Computation of the identified models can be done 
very quickly. Thirty iterations used in identifying a 
third order model took less than 2 seconds on 
Pentium computer with 250 MHz clock speed. 
 
Note also that the conditions (2) and (3) are 
satisfied for this example and consequently the L2 –
gap and the v-gap are identical.   

5.2 Example 2 
The data is assumed to come form the discrete-time 
system. 
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This system is assumed to be connected in 
feedback configuration with the controller  
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The proposed algorithm is used for L2-gap metric 
identification. A set of 128 frequencies are selected 
to be equally spaced on the unit circle. The 
frequency response is assumed to be corrupted by 
randomly generated complex additive perturbation 
with magnitude less than 0.05. First and second 
order models are identified and the identified 
models are given by 
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The corresponding L2- gap are given by 0.5544 and 
0.0120 respectively.  

6. Conclusion 
  
In this paper a frequency domain algorithm to 
identify discrete-time and continuous time systems 
is proposed. The proposed algorithm formulates 
the identification problem as an L2-gap metric 
approximation problem. The identified models are  
rational transfer function that minimizes the L2-
gap. The main step in each iteration of the 
algorithm is a least squares approximation that can 
be efficiently solved. Two examples were used to 
illustrate the algorithm. The identified models were 
very close to the true models. 
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