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Abstract

Channel estimation is an important prerequisite for receiver design. In this paper we

present a semi-blind low complexity frequency domain based channel estimation algorithm

for multi-access Orthogonal Frequency Division Multiplexing (OFDM) systems. Our algo-

rithm is based on eigenvalues interpolation and makes a collective use of data and channel

constraints. We exploit these constraints to derive a frequency domain Maximum A Poste-

riori (MAP) channel estimator. Furthermore, we develop a data aided (expectation maxi-

mization based) estimator incorporating frequency correlation information. The estimator is

further enhanced by utilizing the time correlation information through a Forward Backward

(FB) Kalman filter. We also explore various implementation for the FB Kalman filter. The

simulation results are provided validating the applicability of the proposed algorithm.
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1 Introduction

OFDM is a technology that promises to meet the high transmission demands of modern times.

Since the last decade, OFDM has attracted considerable attention and has been selected as the

physical layer of choice for broadband wireless communications systems [1]-[4]. The main reason

for this interest is the substantial advantage it offers in high rate transmissions over frequency

selective fading channels like robustness to multi-path fading and capability to control the data

rate according to the transmission channel [5]. The other main advantage of OFDM is its

simple receiver structure utilizing a Frequency-domain Equalizer (FEQ) with only one complex

multiplication per subcarrier to mitigate frequency selectivity. As such, OFDM has found wide

acceptance and application.

Channel estimation is an integral part of any receiver design. Numerous research contribu-

tions have appeared in literature on the topic of channel estimation in recent years. Most works

have investigated channel estimation for single user OFDM systems. One way to classify these

works is according to whether they perform estimation in the time domain or the frequency

domain.

Many researchers have pursued channel estimation in the time domain. A joint carrier

frequency synchronization and channel estimation scheme using the Expectation-Maximization

(EM) approach is presented in [6] while [7] used subspace tracking. In [8], a joint channel

and data estimation algorithm is presented which makes a collective use of data and channel

constraints. A joint frequency-offset and channel estimation technique for Multi-Symbol Encap-

sulated MSE OFDM system is proposed in [9], while the authors of [10] presented a sequential

method based on carrier frequency offset and symbol timing estimation. The authors of [11]

estimated the channel based on Power Spectral Density (PSD) and Least Squares (LS) esti-

mation for OFDM systems with timing offsets. A pilot aided channel estimation algorithm in

the presence of synchronous noise by exploiting the a priori available information about the

interference structure was presented in [12] while [13] used implicit pilots for joint detection and
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channel estimation. A joint time domain tracking of channel frequency offset for OFDM systems

is suggested in [14] while a time domain Carrier Frequency Offset (CFO) tracking method based

on Particle filtering is presented in [15].

Various techniques for channel estimation in the frequency domain have also been explored

in the past years. Authors of [16] applied phase shifted samples in the frequency-domain to

an LS interpolator to estimate the channel while [17] proposed to include a phase rotation

term in the frequency domain interpolation for better Channel Impulse Response (CIR) window

location. The authors of [18] proposed channel estimation using polynomial cancellation coding,

training symbols and frequency domain windowing. The authors in [19] presented a sub-band

approach to channel estimation and channel equalization. The Minimum Mean Square Error

(MMSE) channel estimation in the frequency domain is considered in [20] while authors of [21]

explored delay subspace-based channel estimation techniques for OFDM systems over fast-fading

channels.

Due to the complex nature of the problem, various iterative methods have also been explored

[22, 23]. Such techniques iterate between data detection step and channel estimation step, using

the result of one to improve the other. In [24], two EM based channel estimation algorithm

for OFDM systems using transmit diversity are compared, [25] considered a Space Time Block

Coded (STBC) EM based approach for OFDM systems while an iterative method for detection

and frequency synchronization in multi access OFDM systems is presented in [26]. All three

of these works perform channel estimation in time domain. The data detection step is always

performed in frequency domain. Thus for iterative methods, performing channel estimation in

time domain would not only incur more computations but introduce some latency as well.

In multiuser OFDM scenario, channel estimation has several dissimilarities from the single

user case, and poses several additional challenges, e.g., in a multiuser OFDM system, the user

has access to a part of the frequency band and not the whole band. Also the number of pilots

available per user are much less in the multiuser case as compared to the single user OFDM
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case. In practical systems like the long term evolution (LTE), the cell specific reference signal

(CRS) in the downlink transmission is accessible to all users. Although this CRS can be used

for channel estimation purposes, this information might not be frequent enough if a user is

moving at a higher speed relative to other users. All of these hurdles are elegantly handled

in case of frequency domain channel estimation. The correlation among the carriers in the

frequency domain is usually higher than the correlation among the time domain taps. The

reason being the time domain taps represent the whole OFDM bandwidth while the frequency

domain “bins” correspond to only a narrow band of the spectrum. This correlation can be

exploited to drastically reduce the training overhead in the frequency domain and estimation

can be performed using LP < L + 1 pilots (where LP is the number of pilots used and L + 1 is

the number of time domain channel taps). Of course one cannot reduce training indefinitely as

this will result in an error floor.

Particle filtering based solutions (like in [15]) have limited applications as Particle filtering

has been shown to require up to 2 to 4 times more computations than the extended Kalman

filter to achieve the same accuracy [27]. As such, Kalman filtering based solutions are more

practical. Furthermore, using system constraints (frequency and time correlation) to aid the

estimation process is bound to give better results. It is, therefore, worthwhile to investigate a

frequency domain approach for channel estimation and the aim of this work is to present a low

complexity frequency domain channel estimation algorithms for multi-access OFDM systems.

A problem associated with frequency domain channel estimation is the increase in the para-

meter estimation space [20]. Let L+1 be the number of time domain channel taps and N be the

length of frequency domain channel response with N > L + 1. The frequency response of the

channel is inherently limited by the degrees of freedom of the time domain impulse response. As

a user is only assigned a small band of the spectrum in multi access OFDM system, the number

of parameters needed to represent the CIR can be reduced. In Section 3, we will show how to

utilize this property to represent the CIR using the dominant eigenvalues.
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The paper is organized as follows. Section 2 describes the OFDM system model. Section 3

presents a new frequency domain data aided parameter reduction model for channel estimation.

Section 4 introduces time correlation information to improve the receiver design. Section 5 gives a

quick overview of the equivalent time domain channel estimation method. Section 6 compares the

computational complexity of the presented algorithms in time and frequency domain. Section 7

discusses the simulation results and Section 8 provides the concluding remarks.

2 System Model

We consider the downlink of a multi-access OFDM system in which K users are active simul-

taneously. The total number of subcarriers of the system is denoted by N , out of which each

user has access to NK = N
K subcarriers1. Figure 1 shows the block diagram of the system under

consideration. The data bits, to be sent over the system, are first fed to a convolutional encoder,

punctured and then passed through a random interleaver. The bit sequence thus obtained, is

mapped to QAM symbols using Gray code. The QAM symbols are then mapped to OFDM

symbols at the data tones and pilots are inserted at the pilot tones. Here we consider comb-type

pilots as they are more robust in fast fading channels than block-type pilots [28]. We will use

calligraphic notations (e.g., X ) for vectors in the frequency domain. Now consider a sequence

of T +1 such OFDM symbols {X 0, X 1, . . . ,X T }to be transmitted. Each OFDM symbol X i (of

length N), undergoes an IFFT operation to produce the time domain symbol xi =
√

NQ∗X i,

where Q is the N×N Discrete Fourier Transform (DFT) matrix given by Q = [e
−j 2π

N
(m−1)(n−1)

m,n ]

with m = 1, 2, . . . , N , n = 1, 2, . . . , N and where ∗ denotes conjugate transpose. The transmitter

then appends a Cyclic Prefix (CP) of length P and transmits the resulting super symbol. The

CP is discarded at the receiver thereby mitigating the effect of Inter Symbol Interference (ISI).
1For simplicity we assume that the available subcarriers are distributed equally among all users. However, this

need not be the case and our development applies even when the number of carriers per user is different from one

user to another.
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Figure 1: Block diagram.

The channel hi, of length L+1 (≤ P +1), remains fixed over any OFDM symbol and associated

cyclic prefix and varies from one symbol to the next according to a state-space model2

hi+1 = Fhi + Gui h0 ∼ N (0,Rh), ui ∼ N (0, σ2
uI), (1)

where the subscript i shows the time dependence of the variables. Rh is the channel correlation

assumed to be known a priori at the receiver (in our simulations we take it as the power delay

profile) and ui is the additive noise3. The matrices F and G are a function of the doppler spread,

the power delay profile and the transmit filter, and thus the model in (1) captures both frequency

and time correlation (for details on the construction of these matrices, and a justification of this

model, see [8]). Now Hi is the length-N FFT of hi given as

Hi = Q




hi

0


 = QP+1hi, (2)

2The noise and channel statistics are assumed to be stationary with respect to the channel coherence time and

generally estimated by sending a training sequence for this purpose.
3ui models the randomness in hi+1. So part of hi+1 is a function of hi, i.e., Fhi and the other part is random

modeled by Gui.
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where QP+1 is the matrix which contains the first P + 1 columns of Q. Let H(k)
i corresponding

to the kth section of the frequency response of the channel in which the kth user operates. The

input/output relationship for this user is best described in the frequency domain and is given

by

Y(k)
i = diag(X (k)

i )H(k)
i + N (k)

i , (3)

where Y(k)
i , X (k)

i , H(k)
i and N (k)

i are the kth sections of Y i (the received signal), X i, Hi

and N i (the additive white Gaussian noise N (0, σ2I)), respectively. Let the index set I
(k)
p =

{i1, i2, . . . , iLp} denote the pilot locations within the kth section of the transmitted data known

a priori at the receiver. Also, let AIp denote the matrix A pruned of the rows that do not

belong to I
(k)
p , then the pilot/output equation corresponding to (3) is given by

YIp,i = diag(X Ip,i)HIp,i + N Ip,i, (4)

where in (4) and thereafter we suppress the dependence on the user index k for notational

convenience. This suppression is possible because the users are independent from each other in

the frequency domain.

3 Frequency Domain Channel Estimation

Consider the input/output equation in 3, of the kth user. It consists of NK equations in NK

unknowns. So to estimate the frequency response H, all carriers should be used for training. In

the following subsection , we pursue a parameter reduction approach for estimating H.

3.1 A parameter reduction approach

We begin by presenting a frequency domain based LS algorithm for channel estimation and

later extend the idea to incorporate time correlation over several symbols in Section 4. The

algorithms presented in this section process on a symbol by symbol basis, therefore we will drop

the dependence of variables on time index i for clarity. In order to reduce the parameter space
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to be estimated we resort to model reduction, starting from the autocorrelation function of H,

RH (where RH is the FFT of Rh which itself is the autocorrelation function of h)4. To this

end, consider the eigenvalue decomposition of RH

RH =
NK∑

nk=1

λnk
vnk

vT
nk

where λ1 ≥ λ2 . . . ≥ λNK
are the ordered eigenvalues of RH and v1, . . . ,vNK

are the corre-

sponding eigenvectors. We can use this decomposition to represent H as

H =
NK∑

nk=1

αnk
vnk

,

where α = [α1, α2, . . . , αNK
]T is a parameter vector, to be estimated, with zero mean and

autocorrelation matrix Λ = diag(λ1, λ2, . . . , λNK
). We now represent H using the dominant

eigenvalues and treat the rest as modeling noise 5, i.e.

H = V dαd + V nαn. (5)

Upon substituting (5) in (3), we obtain

Y = diag(X )V dαd + N + diag(X )V nαn = Xdαd + N ′
, (6)

where Xd = diag(X )V d and N ′
= N + Xnαn with Xn = diag(X )V n. The noise N ′ includes

both the additive and modeling noise. We consider it to be zero mean white gaussian noise with

autocorrelation

RN ′ = RN + diag(X )V ndiag(Λn)V ∗
ndiag(X )∗, (7)

where Λn is diagonal matrix constituting of the non-dominant ordered eigenvalues of RH. Now

equation (6) can be used to construct a pilot/output equation similar to (4), as

YIp
= Xd,Ip

αd + N ′
Ip

, (8)

4Although channel taps are usually assumed to be uncorrelated, the presence of the receive filter and the

sampling process introduce correlation in the channel taps.
5The cutoff between the parameters that are considered dominant and the ones that are considered as part of

the modeling noise depends on the relative values of the λ
′
js. In our simulations, we use the condition

λj

λj+1
> 5

to place our cutoff.

8



which can be used to estimate αd by maximizing the log likelihood function

α̂MAP
d = arg max

αd

{
ln p(YIp

|Xd,Ip
, αd) + ln p(αd)

}
. (9)

The MAP estimate of parameter α is thus given by6

α̂MAP
d = arg min

αd



‖YIp

−Xd,Ip
αd‖2

R−1

N′
Ip

+ ‖αd‖2

Λ−1
d



 , (10)

where Λd is a diagonal matrix constituting of the dominant ordered eigenvalues of RH. As

the channel is assumed to be jointly gaussian, so the MAP estimator is the same as the MMSE

estimator for the same input and output sequence (for proof see Problem 10.9 in [29]). The

above optimization simplifies to

α̂d = ΛdX
∗
d,Ip

[
RN ′

Ip

+ Xd,Ip
ΛdX

∗
d,Ip

]−1

YIp
, (11)

and the resulting mean square error is given by

Re =
[
Λ−1

d + X∗
Ip

R−1

N ′
Ip

XIp

]−1

. (12)

The estimate of the kth section of the spectrum is then given by Ĥ(k)
= V

(k)
d α̂

(k)
d .

3.2 Iterative channel estimation using the expectation maximization approach

Pilot based channel estimation, whether in the time domain or frequency domain, does not

make full use of the constraints on the data. One can thus implement iterative (data-aided)

techniques for channel estimation [8]. A formal way to do so is by implementing the expectation

maximization (EM) algorithm.As its name suggests, the EM algorithm consists of two steps: a

maximization step and an expectation step. We discuss them in the following subsections.

3.2.1 The maximization step

In the previous subsection we found α̂d by maximizing the log likelihood function given by

equation (9). Since the input X (and hence Xd) is not observable, we can employ the EM
6We use the weighted norm ‖αd‖2Σ to denote α∗dΣαd.
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algorithm and instead of maximizing (9) we can maximize an averaged form of the log likelihood

function. Specifically, starting from an initial estimate α̂
(0)
d , calculated say using pilots, the

estimate α̂d is calculated iteratively with the estimate at the jth iteration given by

α̂
(j)
d = arg max

αd

{
EXi|Yi,α̂d

(j−1) ln p(Y |Xd, αd) + ln p(αd)
}

, (13)

which simplifies to 7

α̂MAP
d = arg min

αd

{
E‖[Y −Xdαd‖2

R−1

N′
+ ‖αd‖2

Λ−1
d

}
. (14)

Strictly speaking, the noise correlation RN ′ is itself dependent on the input due to the modeling

noise (see equation (7)). Hence in performing the expectation in (14), we need to take this into

account. Treating the general case is difficult, so we consider the following three cases for R−1
N ′ :

Case 1: RN ′ is a constant:

This happens when we ignore the modeling noise so that RN ′ = σ2I where the expectation

in (14) is taken with respect to Xd given Y and the most recent estimate αd. In this case RN ′

becomes independent of Xd and it would then be straight forward to carry the expectation

in (14). Specifically, upon completing the squares, (14) can be equivalently written as

min
αd

Y∗
i R

−1

N ′Y i −α∗dE[X∗
d]R

−1

N ′Y i −Y∗
i R

−1

N ′E[Xd]αd

+α∗dE[X∗
d]R

−1

N ′E[Xd]αd −α∗dE[X∗
d]R

−1

N ′E[Xd]αd

+α∗dE[X∗
dR

−1

N ′Xd]αd + α∗dΛ
−1
d αd,

which can be simplified to

α̂MAP
d = arg min

αd

‖Y − E[Xd]αd‖2
1

σ2
n

I
+ ‖αd‖2

1

σ2
n

Cov[X∗
d]

+ ‖αd‖2
Λ−1

d

. (15)

Case 2: Taking Expectation of RN ′ :

Instead of ignoring the modeling noise, we can split the expectation in (14) into an expecta-

tion over RN ′ and an independent expectation taken over the rest of the terms i.e., we can

7The expectation is taken with respect to the input given the output and the most recent estimate α̂j−1
d . This

information is understood and dropped for notational convenience.
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approximate (14) as

α̂MAP
d = arg min

αd

{
E‖[Y −Xdαd‖2

E[RN′ ]
−1 + ‖αd‖2

Λ−1
d

}
. (16)

Now the expectation of RN ′ is given by

E[RN ′ ] = σ2I + E[diag(X )V nΛnV ∗
ndiag(X ∗)] (17)

= σ2I + E[D]V nΛnV ∗
nE[D∗] + Cov[D]diag(V nΛnV ∗

n), (18)

where D = diag(X ) and where diag(V nΛnV ∗
n) is a diagonal matrix whose diagonal coincides

with the diagonal of the matrix V nΛnV ∗
n (see Appendix A for details). The now averaged RN ′

does not depend on X any more. Replacing RN ′ by its expectation, it is then straight forward

to carry the expectation in (16) which comes out to be

α̂MAP
d = arg min

αd

‖Y −E[Xd]αd‖2
E[RN′ ]

−1 + ‖αd‖2
Cov[D]diag(V nΛnV ∗

n)
+ ‖αd‖2

Λ−1
d

. (19)

Case 3: X is constant modulus:

In the constant modulus case, it is possible to evaluate (14) exactly. Specifically, and starting

from the expression for the autocorrelation as RN ′ = σ2I + DV nΛnV ∗
nD∗ and we can write

R−1

N ′ = (σ2I + DV nΛnV ∗
nD∗)−1

= D−∗(
σ2

E I + V nΛnV ∗
n)−1D−1

= D−∗R−1

N ′′D
−1,

where RN ′′
∆= σ2

E I + V nΛnV ∗
n and where we used the fact that DD∗ = EI since the input is

constant modulus. With this in mind, we conclude that

X∗
dR

−1

N ′ = V ∗
dD

∗R−1
N = V ∗

dR
−1

N ′′D
−1

R−1

N ′Xd = D−1∗R−1

N ′′V d

and

X∗
dR

−1

N ′Xd = V ∗
dR

−1

N ′′V d.
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Thus, in the constant modulus case, (14) can be equivalently written as

α̂MAP
d = arg min

αd

Y∗E[D−1∗]R−1
N ′′E[D−1]Y −Y∗E[D−1∗]R−1

N ′′V dαd

−α∗dV
∗
dR

−1

N ′′E[D−1]Y + α∗dV
∗
dR

−1

N ′′V dαd + α∗dΛ
−1
d αd,

which upon simplification becomes

α̂MAP
d = arg min

αd

‖E[D−1]Y − V dαd‖2
R−1

N′′
+ ‖αd‖2

Λ−1
d

. (20)

In the simulations further ahead, we compare the approximate solutions (15) and (19) with the

exact EM solution (20) for a constant modulus input. Simulations show that replacing R
′
N with

its expectation is almost as good as calculating the expectation exactly.

3.2.2 The expectation step

By inspecting subsection 3.2.1, we see that to perform the maximization step, we need to

calculate the following moments

E[Xd], Cov[X∗
d], E[D], E[DBD∗], and E[D−1]. (21)

Now as Xd = diag(X )V d = DV d we can see that the moments of Xd can be expressed in

terms of moments of D. Specifically we have that

E[Xd] = E[D]V d,

and

Cov[X∗
d] = E[XdX

∗
d]− E[Xd]E[X∗

d]

= E[D]V dV
∗
dE[D∗] + Cov[D]diag(V dV

∗
d)− E[D]V dV

∗
dE[D∗]

= Cov[D]diag(V dV
∗
d).

Moreover, we show in Appendix A that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B). (22)
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From above, it follows that in order to calculate the expectations in (21), it is enough to calculate

the following three moments

E[diag(X )], Cov[diag(X )] and E[diag(X )−1], (23)

where the expectation is performed given the output Y and the most recent channel estimate

Ĥ. In carrying out these expectations, we will assume that the elements of X are independent8.

With this in mind, it is easy to see that we can evaluate the moments in (23) and hence in (21)

by calculating E[X (l)], Cov[X (l)] = E[|X (l)|2]− |E[X (l)]|2, E[ 1
X (l) ]. Now assuming that X (l)

is drawn from the alphabet A = {A1, . . . , AM} with equal probability, it can be shown that [8]

E[X (l)|Y(l),H(l)] =

∑M
j=1 Aje

− |Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(24)

E[|X (l)|2|Y(l),H(l)] =

∑M
j=1 |Aj |2e−

|Y(l)−H(l)Aj |2
σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

(25)

E[
1

X (l)
|Y(l),H(l)] =

∑M
j=1

1
Aj

e−
|Y(l)−H(l)Aj |2

σ2

∑M
j=1 e−

|Y(l)−H(l)Aj |2
σ2

. (26)

3.2.3 Summary of the EM algorithm

Now let us summarize the EM based estimation algorithm developed so far.

1. Calculate the initial channel estimate Ĥ(0) using pilots (10).

2. Calculate the moments of the input given the current (jth) channel estimate Ĥ(j) and the

output Y using equations (24)-(26).

3. Calculate the channel estimate using either one of the methods (15), (19) or (20) outlined

in Section 3.2.
8This is in general not true because the elements of H are not independent (as the elements of H are the

Fourier transform of the impulse response h). However, we continue to use this approximation as this maintains

the transparency of element-by-element equalization in OFDM.
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4. Iterate between steps 2 and 3.

The algorithm can be run for a specific number of times or until some predefined minimum error

threshold is reached.

4 Using Time-Correlation to Improve the Channel Estimate

The receiver developed in the previous section performs channel estimation on a symbol by

symbol basis. In a practical scenario the channel impulse responses are correlated over time.

In this section, we will show how to use time correlation to enhance the estimate of αd,i (here

we reintroduce the dependence of variables on time index i). To this end, let us first develop a

model for the time variation of the parameter αd,i.

4.1 Developing a frequency domain time-variant model

Consider the block fading model in (1) and lets assume for simplicity that the diagonal matrices

F and G are actually scalar multiples of the identity, i.e. F = fI and G =
√

1− f2I where f

is a function of Doppler frequency (see [8]). We will use the time domain model in (1) to derive

a similar model for α. To this end, recall that Hi = QP+1hi. Thus, the kth section of Hi, H(k)
i ,

is related to hi by

H(k)
i = Q

(k)
P+1hi, (27)

where Q
(k)
P+1 corresponds to the kth section of QP+1, i.e., QP+1 pruned of all its rows except

those of the kth section. Now, we can replace H(k)
i by its representation using the dominant

parameters αd, to get

V dαd,i = Q
(k)
P+1hi,

or

αd,i = V +
d Q

(k)
P+1hi,
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where V +
d is the pseudo inverse of V d. Multiplying both sides of (1) by V +

d Q
(k)
P+1 yields a

dynamical recursion for αd

αd,i+1 = F ααd,i + Gαui, (28)

where F α = fI and Gα =
√

1− f2V +
d Q

(k)
P+1 and where E[αd,0α

∗
d,0] = Λd. Note that the

dependence of Gα and αd on k has again been suppressed for notational convenience. We are

now ready to implement the EM algorithm to the frequency domain system governed by the

dynamical equation (28). As we have seen in Section 3, the algorithm will consist of an initial

estimation step, a maximization step, and an expectation step.

4.2 Initial (Pilot-Based) Channel Estimation

In the initial channel estimation step, the frequency domain system is described by equations

(8) and (28), reproduced here for convenience.

YIp,i = Xd,Ip,iαd,i + N ′
Ip,i (29)

αd,i+1 = F ααd,i + Gαui. (30)

Now given a sequence i = 0, 1, . . . , T of pilot bearing symbols, we can obtain the optimum

estimate of {αi,d}T
i=0 by applying a forward-backward Kalman to (29)-(30) (see[8], [29]), i.e., by

implementing the following equations.

Forward run: Starting from the initial conditions P 0|−1 = Π0 and α0|−1 = 0 and for

i = 0, . . . , T, calculate

Re,i = RN ′ + Xd,Ip,iP i|i−1X
∗
d,Ip,i (31)

Kf,i = P i|i−1X
∗
d,Ip,iR

−1
e,i (32)

α̂i|i =
(
I −Kf,iXd,Ip,i

)
α̂i|i−1 + Kf,iY i (33)

α̂i+1|i = F αα̂i|i (34)

P i+1|i = F α

(
P i|i−1 −Kf,iRe,iK

∗
f,i

)
F ∗

α +
1
σ2

n

GαG∗
α. (35)
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Backward run: Starting from λT+1|T = 0 and for i = T, T − 1, . . . , 0, calculate

λi|T =
(
IP+N −X∗

d,Ip,iK
∗
f,i

)
F ∗

i λi+1|T + X∗
d,Ip,iR

−1
e,i

(
Y i −Xd,Ip,iα̂i|i−1

)
(36)

α̂i|T = α̂i|i−1 + P i|i−1λi|T . (37)

The desired estimate is α̂i|T . This gives us an initial estimate to run the data-aided part of the

algorithm.

4.3 Iterative (data-aided) channel estimation

In the data aided channel estimation problem, we use the whole data symbol and not just the

pilot part (i.e. we use the whole kth section of the spectrum in which the user is operating).

Thus, in this case our system is described by equations (6) and (28) also reproduced here for

convenience

Y i = Xd,iαi,d + N ′
i (38)

αd,i+1 = F ααd,i + Gαui. (39)

If the data symbols Xd,i were known, we would have employed the forward-backward Kalman-

Filter (31)-(37) on the above state-space model. Since the input is not available, we replace it

by its estimate. Specifically, along the lines developed in [8] we can show that the FB Kalman

filter needs to be applied to the following state space model

Y i =




E[Xd,i]

Cov[X∗
d,i]

1
2


αi,d +




N ′
i

0


 (40)

αd,i+1 = F ααd,i + Gαui, (41)

where the expectations in (40) are taken given the output Y i and most recent channel estimate

αd,i. The expectations that appear in (40) are calculated as we did in Subsection 3.2.2.

In contrast to the symbol by symbol EM algorithm of Section 3 where there was one dimen-

sion to iterate against (channel estimation vs data detection), there are two dimensions that we

can iterate against when the channel is correlated over several symbols:
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1. We can iterate between channel estimation and data detection.

2. We could also iterate against time using the Kalman filter where the previous channel

estimate informs the subsequent channel estimate.

Depending on how we schedule iterations across these two dimensions, we get different receivers.

In the following, we discuss the implementation structure of these variations.

4.4 Cyclic FB Kalman

In the cyclic based Kalman, we initialize the algorithm using the FB Kalman implemented over

the pilot symbols. This is then used to initialize the data aided version, where the channel

estimate is used to obtain the data estimate, and that allows us to propagate the estimate to

the next symbol. The process is continued until the forward steps are completed followed by the

backward run. The EM steps are repeated again ( 2nd forward run followed by 2nd backward run

and so on). In other words, we iterate only once between channel estimation and data detection

before invoking the Kalman to move to the next symbol and so on. The iterations thus trace

circles over the OFDM symbols which motivates the name Cyclic Kalman.

4.5 Helix based FB Kalman

The Helix based FB Kalman is a more generalized version of the Cyclic Kalman. The two

filters are initialized in the same way. However at each symbol, we iterate several times between

channel estimation and data detection before moving on the next symbol (whereas the cyclic

Kalman iterates once between the channel estimate and data estimate at each step). This allows

us to refine the channel estimate as much as possible before propagating it to the next OFDM

symbol using the Kalman filter. The iterations in this case draw a helix shape, hence the name.

17



4.6 Code enhanced Kalman

In any practical system, an outer code is usually implemented that extends over several OFDM

symbols. The outer code can be used to enhance the data aided channel estimate. Specifically,

following data detection, the code can be invoked to enhance the data estimate (through error

correction). Now the (hard) data obtained is more refined and hence can be used to enhance

the channel estimate by employing the FB Kalman again. Our simulations show that invoking

the code can have a profound effect on performance.

4.7 Forward Kalman filter

One drawback of the three FB Kalman implementations detailed above is the latency and

memory involved as one needs to store all symbols to perform the backward run. One way

around that is to implement the forward only Kalman which avoids the latency problem. The

forward only Kalman thus suffers as a result in performance and is not able to make use of the

code to enhance the channel estimate.

5 Benchmarking

For benchmarking purposes, we compare the frequency domain (LS and Kalman) receivers of

Sections 3 and 4 with a frequency domain estimator (LMMSE). We also compare with a time

domain estimation method to signify the advantage offered by the proposed methods over time

domain estimation techniques under same constraints.

5.1 Frequency domain LMMSE estimator

To gauge the performance of the proposed frequency domain methods, we compare them with

the standard LMMSE algorithm. We compare the results with two implementations of the

LMMSE estimator, one using only frequency correlation and second using both time and fre-

quency correlation information for estimating the channel (for further detail see [30]).
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5.2 Time domain multiple access channel estimation

We also compare the performance of our proposed algorithms against time domain estimation

method. How do users estimate the channel in the time domain given their limited share of

the spectrum? To describe this, we just need to write the input/output equations seen by each

user. The input/output equation for the kth user is given by (3) as Y(k)
i = diag(X (k)

i )H(k)
i +

N (k)
i . Recall that the kth section of frequency response H(k)

i can be written as H(k)
i = Q

(k)
P+1hi

using (27). So, we can write

Y(k)
i = diag(X (k)

i )Q(k)
P+1hi + N (k)

i . (42)

Equation (42) can be used for initial time domain estimate using pilots and for symbol by symbol

EM based estimation. If we use in addition the dynamic recursion of (1) we can implement

the various kind of Kalman filters discussed in the previous section for time domain channel

estimation (see also [8]).

6 Computational Complexity

We compare the computational complexity of the various algorithms presented and compare it

with the standard Linear Minimum Mean Square Error (LMMSE) algorithm. We represent the

subcarriers assigned to the kth user by NK = N
K , d is the number of dominant eigenvalues, n

is the number of non-dominant eigenvalues, l is the OFDM frame length, j is the number of

EM iterations, M is the size of the alphabet set and P is the number of time domain channel

taps. Results are given in Table 1 in approximate number of complex multiplications (CM).

For a fair comparison between algorithms that perform estimation on a symbol by symbol basis

(Section 3) and those that perform estimation frame by frame basis (Section 4), we compare the

approximate number of CM each algorithm will perform for l symbols.

Table 1 lists the various algorithms compared in the paper. The estimation domain of the

algorithms, frequency domain (FD) or time domain (TD), is also indicated. We see that when
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A priori

info. used
Algorithm Complexity

LMMSE (FD) ljN3
K + lj(3M + 1)N2

K + 2ljNK

RN ′ constant (FD) ljN3
K + lj(4M + d + 1)N2

K + 4ljdNK

Constant modulus (FD) ljN3
K + lj(3M + d + n + 1)N2

K + lj(3d + n + 1)NK

frequency

correlation

Expection of RN ′ (FD) ljN3
K + lj(4M + d + n + 3)N2

K + lj(4d + n)NK

l(j + 1)N3
K + lj(3d + n + 3M + 3)N2

KHelix Kalman (FD)
+l(4jd2 + jd + jn2 + d2 + 2d)NK

Helix Kalman (TD) l(j + 1)N3
K + l(3jM + 4P )N2

K + l(4P 2 + 6P + 2jP )NK

Forward Kalman (FD) ljN3
K + lj(3d + n + 3M + 3)N2

K + lj(4d2 + d + n2)NK

Cyclic Kalman (FD) 2ljN3
K + lj(3d + n + 3M + 3)N2

K + lj(5d2 + 3d + n2)NK

frequency

and time

correlation
2l(j + 1)N3

K + 2lj(3d + n + 3M + 3)N2
KCode Enhanced Kalman (FD)

+2l(4jd2 + jd + jn2 + d2 + 2d)NK

LMMSE (FD) l3jN3
K + l2j(3M + 2)N2

K + ljNK

Table 1: Comparison of computational complexities.

only frequency correlation information is used, the algorithms presented here are of the same

complexity order as the LMMSE. However, when both frequency and time domain correlation

are used, the Kalman filters (Forward/Helix/Cyclic/Code Enhanced) are of lower complexity

than the LMMSE. Furthermore, the computational complexity of the frequency domain Helix

Kalman is lower than the time domain Helix Kalman as the number of significant eigenvalues

αd are less than the channel length P .

7 Simulation Results

We consider a multi-access OFDM system which has 4 active users and frame size of 6 symbols

(l = 6). Each OFDM symbol has 64 carriers, of which 16 are (equispaced) pilot tones distributed

equally among the 4 users. The CP used is of length 15. Each user has access to 16 subcarriers.

The data bits are mapped to 16 QAM through Gray coding (except for Figure 2 which uses
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4 QAM). Where specified, an outer code is used to provide robustness. The outer code is 1/2

rate convolutional code. The time domain channel impulse response consists of 15 complex taps

(worst case scenario while avoiding ICI) and has an exponential delay profile E[|h0(t)|2] = e−0.2t

and remains fixed over any OFDM symbol. We also test our methods on the ITU vehicular B

channel model (Figures 5(a) and 5(b)). In what follows, we compare the performance of various

frequency domain based channel estimation methods for the both the coded and uncoded cases.

We benchmark our proposed methods with the standard LMMSE algorithm with frequency and

time correlation and the time domain method briefly described in Section 5.

7.1 Effect of modeling noise

Figure 2 shows the MSE for the three cases considered in Subsection 3.2. The figure is plotted for

constant modulus data using 16 pilots. The figure shows that the MSE of the channel estimate

decreases when modeling noise is taken into account. It also shows that for the constant modulus

case, splitting the expectation in (14) or calculating the expectation exactly (exact solution),

have almost comparable results.
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Figure 2: Effect of modeling noise.
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Figure 3: BER comparison for various uncoded freq. domain methods.

7.2 Kalman filter based receivers

Figure 3 compares the BER performance of frequency domain Forward Kalman, Cyclic and

Helix Kalman filters with the time domain LS method and Helix Kalman for uncoded data. As

expected, we see that using Kalman filter improves the EM based estimate in the frequency

domain. We also see that Helix based Kalman performs better than other frequency domain

based techniques and that the frequency domain methods fair better than the time domain

methods.

Figure 4(a) compares the BER performance, for the coded case, of various frequency domain

Kalman based algorithms presented in this paper with frequency domain variants of LMMSE

estimator, EM based LS and time domain Helix Kalman estimator. When only the frequency

correlation information is used at the receiver, the EM based LS algorithm gives better re-

sults than the standard LMMSE estimator. When both the frequency and time correlation

information is utilized at the receiver for computing the estimate, the Kalman based receivers
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outperform the LMMSE based receiver. The code enhanced Kalman proves to be the best of

the lot.

Figure 4(b) compares the presented methods when the channel taps are not located on the

FFT grid. When the delay profile of the channel is not uniform, the taps will not lie on the

FFT grid and the channel taps can now be considered to be correlated. This correlation will

be known at the receiver as the delay profile of the channel and the receive filter response are

assumed to be known. Figure 4(b) shows the error floor is much lower specially in the case of

the Code Enhanced Kalman.

Figures 5(a) and 5(b) compare the proposed methods for a practical channel model. We

test our algorithms for the ITU vehB channel model (this model is recommended by WiMAX

forum). The rest of the system parameters are the same as specified above. Figure 5(a) shows

the BER comparison of uncoded system, while Figure 5(b) compares the same methods with 1
2

rate convolutional coding. The proposed method offers up to 2.5 dB gain for the uncoded case

and 1 dB in the coded case over the time domain methods.

8 Conclusion

We present a receiver design based on a semi-blind low complexity frequency domain channel

estimation algorithm for multi-access OFDM systems. Opposed to the time domain case which

estimates the whole spectrum, we propose an eigenvalue based reduced parameter frequency

domain approach in which the user estimates the part of the spectrum in which he operates.

The advantage of this is reduction in computational cost incurred by each user. The receiver

uses pilots to kick start the estimation process and then iterates between channel and data

recovery. The proposed receiver utilizes data (finite alphabet set, code, transmit precoding,

pilots) and channel (finite delay spread, frequency correlation, time correlation) constraints.

Thanks to the decoupled relation in the frequency domain, data recovery is done on an element

by element basis while channel estimation boils down to solving a regularized least squares
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(a) BER comparison when channel taps lie on the FFT grid (no correla-

tion).
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(b) BER comparison with non integer delay profile.

Figure 4: BER comparison with outer code (FD = Frequency Domain, TD = Time Domain).
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(a) Uncoded case.
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Figure 5: BER comparison of proposed methods in ITU vehB channel (FD = Frequency Domain,

TD = Time Domain).
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problem. We propose to improve the estimate making use of the time correlation information

of the channel by relaxing the latency requirement. For this purpose, we employ Cyclic and

Helix based FB Kalman filters and use the outer code to enhance the channel estimate. We

make use of both the frequency and time correlation which results in a relatively low training

overhead and comparatively low computational cost than the standard LMMSE estimator. The

simulation results show the performance of our algorithm is better than the standard LMMSE

estimator and equivalent time domain technique.

A Appendix

To calculate an expectation of the form E[DBD], which appears in (17), we note that by our

assumption different elements of D are independent, making the expectation that involves them

in E[DBD] separable, i.e. for these terms, we have

E[DBD∗] = E[D]BE[D∗]. (43)

The identical forms, however, interact according to

E[DBD] = E[Ddiag(B)D] = E[DD∗]E[diag(B)]. (44)

By combining (43) and (44), we see that

E[DBD∗] = E[D]BE[D∗] + Cov[D]diag(B). (45)
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