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Abstract—This work presents exact tracking analysis of the
ϵ-normalized least mean square (ϵ-NLMS) algorithm for circular
complex correlated Gaussian input. The analysis is based on
the derivation of a closed form expression for the cumulative
distribution function (CDF) of random variables of the form
[||ui||2D1

][ϵ+ ||ui||2D2
]−1. The CDF is then used to derive the first

and second moments of these variables. These moments in turn
completely characterize the tracking performance of the ϵ-NLMS
algorithm in explicit closed form expressions. Consequently, new
explicit closed-form expressions for the steady state tracking
excess mean square error and optimum step size are derived.
The simulation results of the tracking behavior of the filter match
the expressions obtained theoretically for various degrees of input
correlation and for various values of ϵ.

Index Terms—Adaptive algorithms, tracking performance, in-
definite quadratic forms.

I. INTRODUCTION

It is well known that LMS suffers from slow convergence
when the input is correlated. The ϵ-NLMS algorithm [1] is
a variation of the LMS algorithm that exhibits faster con-
vergence in the presence of correlated input. Though several
works have attempted to study the performance of the ϵ-NLMS
algorithm [1]–[12], their results are mostly approximate as
they rely upon strong assumptions, e.g., separation princi-
pal [2], [3], white input [5], [6], [7], [8], specific structure
of input regressor’s distribution [3], [9], [10], small step size
[3], long filters [7] and approximate solutions using Abelian
integrals [2]. Closed form expressions for transient analysis
and steady-state MSE of the ϵ-NLMS algorithm are derived
in [12] but these are in terms of multidimensional moments
for which no closed form solutions are available.

In [13], we present a novel approach for evaluating mean
square and transient performance of the ϵ-NLMS algorithm
for correlated complex Gaussian data. Here we use the same
framework to perform its tracking analysis. Our approach
relies on evaluating the CDF of random variables of the form1

[||ui||2D1
][ϵ + ||ui||2D2

]−1 where D1 and D2 are diagonal
matrices. This is done by rewriting these variable as indefinite
quadratic forms in Gaussian random variables and using

1For any matrix A, ||ui||2A
△
= uiAu∗

i .

complex integration to evaluate the CDF directly2. Using this
CDF, we can evaluate all the moments that appear in the
tracking analysis of ϵ-NLMS in closed form.

The main contributions of the paper are as follows:
a) Analysis presented in this work is generalized3 as it is

not restricted to specific input correlation matrix, small
step-size, independent regressor elements, and white
input.

b) Closed form expressions for tracking excess mean
square error (EMSE) and optimum step size are devel-
oped for the ϵ-NLMS algorithm.

The paper is organized as follows. Following this intro-
duction, the system model is described in Section II. The
tracking performance analysis of the ϵ-NLMS algorithm is
presented in Section III. Derivation for the CDF of the random
variable of the form [||ui||2D1

][ϵ + ||ui||2D2
]−1 is carried out

in Section IV which is used in Section V to evaluate the
moments. Simulation results are presented in Section VI
investigating the performance of the derived analytical model.
Finally, concluding remarks are given in Section VII.

II. SYSTEM MODEL

Let wo(i) be the unknown system to be tracked and i be
the time index. It is assumed that wo(i) is changing according
to

wo(i) = wo(i− 1) + q(i) (1)

where q(i) is assumed to be i.i.d with mean zero and covari-
ance matrix

E[q(i)q(i)H] = Q (2)

where (.)H stands for conjugate transpose. The update rule of
ϵ-NLMS algorithm is given as

w(i) = w(i− 1) + µ
u(i)H

ϵ+ ||u(i)||2
e(i) i ≥ 0 (3)

where u(i) is input regression vector, w(i) is an estimate of
the unknown system wo(i), and e(i) is the estimation error

2This comes in direct contrast to the usual approach of evaluating the
characteristic function first and inverting it to obtain the pdf.

3Our analysis is exact up to the independence assumption.



defined by

e(i) = d(i)− u(i)w(i− 1)

= u(i)wo − u(i)w(i− 1) + v(i)

= ea(i) + v(i) (4)

where d(i) is the desired response, v(i) is a zero mean i.i.d
noise with variance σ2

v that is independent of the input and
ea(i) is excess mean square error. Thus (3) can be written as

w(i) = w(i− 1) + µu(i)Hg[e(i)] i ≥ 0 (5)

where
g[e(i)] =

ea(i) + v(i)

ϵ+ ||u(i)||2
(6)

Let w̃(i) = wo(i) − w(i) denote the weight error vector,
subtracting both sides of (5) from wo(i), the update rule of
ϵ-NLMS can be restated as

w̃(i) = w̃(i− 1)− µu(i)Hg[e(i)] i ≥ 0. (7)

Here we will restrict our attention to circularly symmetric
Gaussian inputs, i.e. u(i) ∼ CN (0,Λ). For the sake of
tracking analysis, the autocorrelation matrix Λ can be assumed
to be diagonal, that is, Λ = diag(λ1, λ2, · · · , λM ), without
any loss of generality [12].

III. TRACKING ANALYSIS OF THE ϵ-NLMS ALGORITHM

An energy conservation approach was used in [12] to study
the performance of data normalized adaptive filters. There it
was shown that for ϵ-NLMS, the tracking EMSE is given by

ea(i) =
µαuσ

2
v + µ−1Tr(Q)

2ηu − µαu
(8)

where
αu

△
= E

[
||u(i)||2

(ϵ+ ||u(i)||2)2

]
(9)

and
ηu

△
= E

[
1

ϵ+ ||u(i)||2

]
(10)

Thus the tracking EMSE of the ϵ-NLMS is completely char-
acterized by these multidimensional moments.

Differentiating (8) with respect to µ and equating it to zero
leads to the following expression for optimum step size

µopt =
1

2ηuσ2
v

√
Tr(Q) [αuTr(Q)− 4η2uσ

2
v ]

αu
− Tr(Q)

2ηuσ2
v

(11)

By inspecting equations (8) and (11), we conclude that
the tracking performance is completely characterized by the
multidimensional-moment terms (9)-(10). These moments are
in turn completely determined by the mean of the following
random variables

1

ϵ+ ||u||2
,

|uk|2

(ϵ+ ||u||2)2
, (k ̸= k̄) (12)

Consider the following generalized random variable

rkk̄(α, ᾱ, γ)
△
=

α|uk|2 + ᾱ|uk̄|2 + γ

ϵ+ ||u||2
, k ̸= k̄ (13)

where α, ᾱ, and γ are constants appropriately chosen from
the set {0, 1} in order to retrieve required random variables
from (12). The dependence of the input regressor vector u(i)
on the time index i has been dropped to simplify the notation.
A close examination of (13) shows that the moment in (10)
can be obtained by setting α = 0, ᾱ = 0, and γ = 1.

ηu = E

[
1

ϵ+ ||u(i)||2

]
= E[rkk̄(0, 0, 1)] (14)

Further, from (9) and (12), αu can be expressed as a summa-
tion of random variables given as

αu = E

[
||u(i)||2

(ϵ+ ||u(i)||2)2

]
=

M∑
k=1

E

[
|uk(i)|2

(ϵ+ ||u(i)||2)2

]
(15)

Using binomial expansion, we can rewrite each term of the
summation as

|uk|2

(ϵ+ ||u||2)2
=

1

2

(
|uk|2 + 1

ϵ+ ||u||2

)2

− 1

2

(
|uk|2

ϵ+ ||u||2

)2

−1

2

(
1

ϵ+ ||u||2

)2

|uk|2

(ϵ+ ||u||2)2
=

1

2
r2kk̄(1, 0, 1)−

1

2
r2kk̄(1, 0, 0)

−1

2
r2kk̄(0, 0, 1). (16)

The off-diagonal elements (when k ̸= k̄) are zero; as
[u∗

kuk̄][ϵ+ ||ui||2]−1 has a symmetric pdf and is an odd func-
tion of uk̄ where uk̄ is independent of the remaining elements
of u. Thus all that is needed to evaluate the multidimensional
moments of (9) and (10) is to evaluate the first two moments of
the random variable rkk̄(α, ᾱ, γ). We will find these moments
from the CDF of rkk̄(α, ᾱ, γ) which is derived subsequently.

IV. THE CDF OF INDEFINITE QUADRATIC FORMS

In this section, we derive the CDF of random variable
rkk̄ (which is an Indefinite Quadratic form) for correlated
circular complex input data with Gaussian distribution. For
notational convenience, we suppress the dependence of rkk̄
on its arguments. The CDF of rkk̄, denoted by Frkk̄

(x), is
defined as

Frkk̄
(x) = P (rkk̄ ≤ x). (17)

From equation (13), we can easily see that the above CDF can
be equivalently expressed as

Frkk̄
(x) = P (ϵx+ x||u||2 − α|u(k)|2 − ᾱ|u(k̄)|2 − γ ≥ 0).

(18)
Consequently, the CDF of rkk̄ can be obtained using the
integral

Frkk̄
(x) =

∫
p(u)ũ(ϵx+x||u||2−α|u(k)|2−ᾱ|u(k̄)|2−γ)du

(19)
where p(u) is the pdf of u and ũ(·) is the unit step function.
Since we are dealing with M -dimensional circular Gaussian



input vector, the pdf of u with a diagonal covariance matrix
Λ, is given by

p(u) =
1

πM |Λ|
e−uΛ−1u∗

. (20)

As done in [14], we can represent the unit step function using
the following integral

ũ(x) =
1

2π

∫ ∞

−∞

ex(jω+β)

(jω + β)
dω. (21)

Substituting equations (20) and (21) in (19) yields the follow-
ing multidimensional integral

Frkk̄
(x) =

1

2πM+1|Λ|

∫ ∞

−∞
×∫

e−u
[
Λ−1−(xI−Dkk̄)(jω+β)

]
u∗
du

e−(γ−ϵx)(jω+β)

(jω + β)
dω(22)

where Dkk̄ is an M×M matrix with all elements equal to zero
except the kth and k̄th elements in the main diagonal which
are equal to α and ᾱ, respectively. In the above equation, the
inner integral is nothing but the Gaussian integral. Thus, it
can be shown that the CDF of rkk̄ is reduced to the following
one - dimensional complex integral

Frkk̄
(x) =

1

π|Λ|

∫ ∞

−∞

e−(γ−ϵx)(jω+β)dω∣∣∣Λ−1 − (xI−Dkk̄)(jω + β)
∣∣∣(jω + β)

.

(23)
Since the matrices involved in the determinant are diagonal, we
can expand the fraction inside the integral using partial fraction
expansion. Specifically, we can show that the determinant in
the above equation is equal to

Ak[
1
λk

− (x− α)(jω + β)
] +

Ak̄[
1
λk̄

− (x− ᾱ)(jω + β)
]

+
Ao

(jω + β)
+

M∑
m=1,m ̸=k,k̄

Am[
1

λm
− x(jω + β)

] (24)

where the constants A0, Ak, Ak̄, and Am(k ̸= k̄,m =
1, 2, · · · ,M,m ̸= k, k̄) are given by

A0 = 1
|Λ−1| , Ak =

λM
k (x−α)δ(α−1)[

ζkk̄−
(x−ᾱ)
(x−α)

]
ΠM

i=1,i̸=k,k̄

[
ζki− x

(x−α)

] ,

Ak̄ =
λM
k̄

(x− ᾱ)δ(ᾱ− 1)[
ζk̄k − (x−α)

(x−ᾱ)

]
ΠM

i=1,i̸=k,k̄

[
ζk̄i −

x
(x−ᾱ)

] (25)

and Am =
λM
m x

p1(α)p2(ᾱ)p3
(26)

where ζij =
λi

λj
, ∀ i, j while

p1(α) =

{
(ζmk − 1) δ(α) +

[
ζmk −

(x− α)

x

]
δ(α− 1)

}
p2(ᾱ) =

{
(ζmk̄ − 1) δ(ᾱ) +

[
ζmk̄ −

(x− ᾱ)

x

]
δ(ᾱ− 1)

}
p3 =

M
Π

i=1,i ̸=k,k̄,m
(ζmi − 1) (27)

and δ(.) represents the impulse function. Thus reducing the
integral in equation (23) into a sum of M +1 simple complex
integrals. Ultimately, the CDF of rkk̄ can be expressed in
closed form given by (28).

V. EVALUATING THE MOMENTS

In this section, we use the CDF of rkk̄ to evaluate the first
two moments of rkk̄. The detailed derivation is provided in
[13]. Here we reproduce part of the derivation for the special
case of α = 0, ᾱ = 0, and γ = 1

A. First Moment of rkk̄
The moment of the first random variable in (12) can be

calculated directly from the first moment of rkk̄ by setting
α = 0, ᾱ = 0, and γ = 1. Since rkk̄ is a positive random
variable with support between zero and [δ(1) + 1

ϵ δ(0)], its
first moment can be expressed directly in terms of the CDF
using integration by parts

E[rkk̄] =

∫ [δ(1)+ 1
ϵ δ(0)]

0

[
1− Frkk̄

(x)
]
dx

=
1

ϵ
δ(0)− I1 − Ī1

−
M∑

m=1,m ̸=k,k̄

I1m. (29)

The above integrals are evaluated using partial fraction expan-
sion. Due to lack of space, intermediate steps are omitted and
only final solutions of these integrals are reported in (30)-(33).

1) Integral Solution for I1: The integral solution of I1 can
be shown to be

I1 =

∫ 1
ϵ

α

Ake
−(1−ϵx)
λk(x)

|Λ|(x)
δ(−1)dx

=−

[
C1 e

(ϵ−1)
λk E1

(
ϵ

λk

)
+

(ϵ− 1)

ϵ
C2 e

(ϵ−1)
λk E2

(
ϵ

λk

)
+ C

′

k̄ e
(ϵ−1)
λk̄ E1

(
1

λk
− 1− ϵ

λk̄

)
+

M∑
m=1,m ̸=k,k̄

C
′

m e
(ϵ−1)
λm E1

(
1

λk
− 1− ϵ

λm

)]
δ(−1) (30)

where En(x)
△
=

∫∞
1

e−xt

tn dt is the generalized exponen-
tial integral function while the constants C1, C2, C

′

k̄
, and

C
′

m (m = 1, 2, · · · ,M, m ̸= k, k̄) are defined as

C1=
−C2δ(0)

(ζkk̄ − 1)
+

C2D
′

−
p4

, C2 =
λM
k e

1
λk

|Λ|(ζkk̄ − 1)p4
,

C
′

k̄ =
λM
k e

1
λk δ(0)

|Λ|(1− ζkk̄)
2p5

,

C
′

m=
λM
k e

1
λk

|Λ|(1− ζkm)2 [ζkk̄ − δ(0)ζkm − δ(−1)] p6
(31)



Frkk̄
(x)= ũ(ϵx− γ) +

Ake
−(1−ϵx)
λk(x−α)

|Λ|(x− α)
[ũ(x− α)− ũ(ϵx− 1)]δ(γ − 1) +

Ake
−ϵx

λk(α−x)

|Λ|(α− x)
[ũ(x)− ũ(x− α)]δ(γ)

+
Ak̄e

−(1−ϵx)
λk̄(x−ᾱ)

|Λ|(x− ᾱ)
[ũ(x− ᾱ)− ũ(ϵx− 1)]δ(γ − 1) +

Ak̄e
−ϵx

λk̄(ᾱ−x)

|Λ|(ᾱ− x)
[ũ(x)− ũ(x− ᾱ)]δ(γ)

+
M∑

m=1,m̸=k,k̄

Am

|Λ|x
e

−(γ−ϵx)
λmx δ(γ − 1)[ũ(x)− ũ(γ − ϵx)] (28)

where

p4 =
M

Π
i=1,i ̸=k,k̄

(ζki − 1), p5 =
M

Π
i=1,i̸=k,k̄

(ζki − ζkk̄),

p6 =
M

Π
i=1,i ̸=k,k̄,m

(ζki − ζkm),

and D
′

− =

[
d

dv

M

Π
i=1,i̸=k,k̄

(ζki − v)

]
v=1

. (32)

2) Integral Solution for Ī1: Result of the integral Ī1 will
be the same as those given by (30), except that the variable
{λk} and {λk̄} will be exchanged.

3) Integral Solution for I1m: The integral I1m evaluates to

I1m =

∫ 1
ϵ

0

Am

|Λ|x
e

−(1−ϵx)
λmx dx

=Cm1E1

(
ϵ

λm

)
+

Cm2λm

ϵ
E2

(
ϵ

λm

)
+Cmke

(
1

λk
− 1

λm

)
E1

(
ζmk − 1 + ϵ

λm

)
+Cmk̄e

(
1

λk̄
− 1

λm

)
E1

(
ζmk̄ − 1 + ϵ

λm

)
(33)

where

Cm1=
−Cm2λm [pmk̄δ(−1) + pmkδ(−1)]

pmkpmk̄

Cm2=
λM−1
m eϵ/λm

|Λ|pmkpmk̄p3

Cmk =
λM
m eϵ/λmδ(−1)

|Λ|p2mk[pmk̄δ(0) + (pmk̄ − pmk)δ(−1)]p3

Cmk̄ =
λM
m eϵ/λmδ(−1)

|Λ|p2
mk̄

[pmkδ(0) + (pmk − pmk̄)δ(−1)]p3

pmk =(ζmk − 1), and pmk̄ = (ζmk̄ − 1). (34)

B. Second Moment of rkk̄
The second moment of rkk̄ can be calculated in a manner

similar to the first moment and can be written as

E[r2kk̄] =
1

ϵ2
δ(γ − 1)− I2(α, γ)− Ī2(ᾱ, γ)

−
M∑

m=1,m̸=k,k̄

I2m(γ). (35)

Again, the above integrals are evaluated using partial fraction
expansion. Details are omitted for brevity, however, the in-
terested reader is encouraged to consult [13] for a detailed
treatment of these integrals and further insight into the prob-
lem.

VI. SIMULATION RESULTS

In this section, the performance analysis of the ϵ-NLMS
algorithm is investigated for an unknown complex valued
system identification problem. The system noise is taken as
zero mean i.i.d. with variance 0.01. The length of the adaptive
filter is taken to be equal to that of the unknown system, i.e.,
5. The correlation matrix of the correlated complex Gaussian
input to the adaptive filter and unknown system is

R =


1 αc α2

c · · · αM−1
c

αc 1 αc · · · αM−2
c

α2
c αc 1 · · · αM−3

c
...

αM−1
c αM−2

c αM−3
c · · · 1


where 0 < αc < 1 is the factor that controls the correlation
between the regressor elements.

Figures 1 and 2 show the plots of the steady-state tracking
EMSE for a wide range of step size values [10−3, 1]. Two
values of Tr(Q) are considered (10−4 and 10−7). The value
of epsilon is taken as 0.5. For Figure 1 the correlation factor
αc is 0.2 while for Figure 2 its value is 0.7. The simulated
results are obtained by averaging over 200 experiments while
the analytical results are obtained by plotting the steady-
state tracking EMSE expression given in equation (8). Close
agreement between the theoretical and simulated results is
obtained as can be seen from these figures. We also note that
the analytical and simulation results agree for a wide range of
correlation factor.

Figure 3 plots the steady-state tracking EMSE for various
values of ϵ with a fixed step size µ = 0.6, Tr(Q) = 10−5

and correlation factor αc = 0.2. We see that the steady state
EMSE is a decreasing function of ϵ. The ϵ-NLMS algorithm
can be viewed as the LMS algorithm with a variable step-size
µ(i) = 1

ϵ+||u||2 . Consequently, by increasing ϵ, the effective
step-size µ(i) decreases which results in a smaller steady-state
EMSE.

Next the theoretical value of optimum step size µopt is
compared with the one obtained by simulation for various
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Fig. 1. Analytical and experimental steady state EMSE vs step sizes
with Tr(Q) = 10−4, 10−7 with αc = 0.2 and ϵ = 0.05.
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Fig. 2. Analytical and experimental steady state EMSE vs step sizes
with Tr(Q) = 10−4, 10−7 with αc = 0.7 and ϵ = 0.05.

values of Tr(Q). Figure 4 indicates the optimum step size
µopt with a dashed line for two values of Tr(Q). The figure
shows close agreement between the theoretical values obtained
from equation (11) and the ones obtained by simulation.
The consistency of the agreement of analytical values and
simulation results supports our analytical treatment of the
problem.

From Figures 1, 2 and 4, we note that the steady state EMSE
is a decreasing function of step size for small values of step
sizes, and after µopt, it becomes an increasing function of step
size. This is contrary to the stationary input case, where the
EMSE was a monotonically increasing function of step size.
This feature is easily recognizable from Figure 3 where the
EMSE is also plotted for very small values of µ. The figures
also show that the derived analytical results are valid for a
wide range of step-size values.

VII. CONCLUSION

The paper presents exact tracking analysis of the ϵ-NLMS
algorithm for correlated complex Gaussian input. The energy
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Fig. 3. Analytical and experimental steady state EMSE vs epsilon
Tr(Q) = 10−5, αc = 0.2 and µ = 0.6.
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Fig. 4. Analytical and experimental steady state EMSE vs step sizes
indicating µopt for Tr(Q) = 10−5, 10−6 with αc = 0.2 and ϵ =
0.001.

conservation approach reduces the tracking analysis to evalu-
ating certain multidimensional moments. Our approach shows
that these moments can be evaluated by first deriving the CDF
of a variable of the form [||u(i)||2D1

][ϵ+||u(i)||2D2
]−1 and then

using this CDF to evaluate the first and second moments of
this random variable. The advantage of this approach is its
transparency and its ability to evaluate performance in closed
form. Though the tracking analysis for the NLMS algorithm
can not be obtained directly from this approach by setting
ϵ = 0, it can easily be done in a similar manner by following
the framework of [15].
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