

IQ Space Frequency Time Codes for MIMO-OFDM Systems

Samir Al-Ghadhban Brian Woerner R. Michael Buehrer samir@kfupm.edu.sa http://faculty.kfupm.edu.sa/EE/samir/

IEEE VTC Spring 2006, Melbourne, Australia

VIRGINIA POLYTECHNIC INSTITUTE & STATE UNIVERSITY

Outline

- Background and motivation
- IQ-SFT code description and performance
- Effect of interleaving

Introduction: Multiple Input Multiple Output (MIMO) Channels

- A MIMO channel is a wireless link between *MT* transmit and *MR* receive antennas.
- MIMO channels boost the information capacity of wireless systems by order of magnitude [Telater95][Foschini98].

OFDM

- Wide bandwidth and high data rates result in frequency selective channels (FSC) which cause ISI.
- OFDM is robust against FSC. It transforms FSC to parallel flat fading channels.
- WLANs such as IEEE 802.11a and Hyperlan2 are based on OFDM

OFDM Channel Model in the Frequency Domain

 N_c subcarriers L taps (FSC length)

Let
$$\mathbf{h}_{mn} = \begin{bmatrix} h_0 & h_1 & \cdots & h_{L-1} \end{bmatrix}^T$$

The OFDM channel in the frequency domain is $\mathbf{h}_{mn}^{f} = \mathbf{F}\mathbf{h}_{mn}$

$$\mathbf{F}_{k,l} = \frac{1}{\sqrt{N_c}} \exp\left[-i \frac{2\pi}{N_c} (k-1)(l-1)\right];$$

$$k = 0, 1, \dots, N_c - 1$$

$$l = 0, 1, \dots, L - 1$$

Let $\mathbf{h} \square N_c(\mathbf{0}, \mathbf{C}_{\mathbf{h}})$

The covariance matrix in the frequency domain is $C_{hf} = FC_{h}F^{H}$

Background on Space Frequency Time (SFT) Codes

- SFT codes apply spatial coding across multiple antennas, frequency coding across OFDM subcarriers, and temporal coding across successive OFDM symbols.
- [Agrawal98]: STTC-OFDM, not optimized for OFDM channels, designed for quasi-static channels.

Design criteria of SFT codes

- The maximum diversity available in MIMO-OFDM systems is $M_T L M_R$ [Ben Lu 2000].
- The design criterion is to maximize the minimum effective length and break up channel correlation in frequency domain by interleaving.
- To achieve this diversity, the minimum effective length of the SFT code should be equal to at least M_TL , which needs large number of states for practical values.

Design criteria of SFT codes

- Our goal in this work is to simplify the design and reduce the number of states required to achieve the full spatial and frequency diversity.
- Our approach is to concatenate trellis coded modulation (TCM) and STBC.
- Spatial diversity is guaranteed by STBC and frequency diversity is provided by TCM.
- We further reduce the number of states of TCM by using IQ-TCM [AlSemari 97].

IQ-TCM [AlSemari97]

The minimum effective length of • TCM is upper bounded by:

$$l_{\min} \leq \lfloor v / k \rfloor + 1$$

1 bps/Hz

1 bps/Hz

3

IQ-SFT

Advantages of concatenated IQ-TCM-STBC at 2bps/Hz

FCS Length	Minimum number of states to achieve full diversity $(M_T L M_R)$		
L	Tarokh STTC QPSK	8PSK-STBC	IQ-16QAM-STBC
2	64	4	2
3	1024	16	4
4	16384	64	8
5	262144	256	16
6	4194304	1024	32
7	67108864	4096	64

Channel Model

- The channel is a MIMO-FSC of length L with equal power paths and each path experience an independent Rayleigh fading.
- We assume that the channel is constant over two OFDM symbols.

Performance results over 2x1 MIMO-OFDM channels at 2 bps/Hz 8-state TCM, N_c =64, W=4

Interleaving effect over 2x1 MIMO-OFDM channels at 2bps/Hz 8-state TCM

Effect of interleaving on subcarrier correlation

SFT coding conclusions

- Concatenated IQ-TCM-STBC-OFDM achieves full spatial and frequency diversity at much lower complexity than other codes.
- Appropriate block interleaver design is essential to maintain the performance and diversity of the code. Best performance is at W=L and W=2L.

