King Fahd University Of Petroleum & Minerals Department of Electrical Engineering EE-204 Fundamentals of Electric Circuits

2012-2013 Second Semester (122)

INSTRUCTOR	OFFICE	Sections	PHONE	E-MAIL	OFFICE HOURS
Dr. Oualid Hammi	59 / 2087	7 and 8	7394	ohammi@kfupm.edu.sa	SM: 10:00AM-11:00AM W: 2:00PM - 3:00PM

Basic laws: Ohm's law, KVL, KCL. Resistive networks. Circuit analysis techniques: node-voltage and mesh-current. Network theorems. Inductance and capacitance. Sinusoidal analysis and phasor methods. Power concepts of AC circuits. Polyphase circuits.

Prerequisites: MATH 102 and PHYS 102

Textbook: Clayton Paul, FUNDAMENTALS OF ELECTRIC CIRCUIT ANALYSIS, Wiley & Sons. Inc., 2001.

Tentative Schedule:

	Tentative Schedule.					
	<u>Week</u>	<u>Topic</u>	Reading Assignment	<u>Laboratory/Tutorial</u>		
1	26 Jan.	Introduction, Basic Definitions, KCL, KVL	1.2 – 1.6	No Meeting		
2	2 Feb.	Conservation of power, Series & Parallel Connection of Elements, Ohm's Law	1.7 – 1.8, 2.1 – 2.3	Exp #1: An Introduction to Multisim		
<u>3</u>	<u>9 Feb.</u>	Resistors in Series and in Parallel, Voltage and Current Division	2.4 – 2.6	Exp #2 Resistors and Ohm's Law		
<u>4</u>	<u>16 Feb.</u>	Source Transformation, Principle of Superposition	2.7, 3.1	No Meeting		
<u>5</u>	<u>23 Feb.</u>	Thevenin Theorem, Norton Theorem	3.2 - 3.3	Problem Session # 1		
	First Major Exam: Wednesday 27 February 6:30-8:00PM					
<u>6</u>	2 Mar.	Maximum Power Transfer, Node Voltage Method	3.4 – 3.5	Exp #3: Kirchhoff's Laws		
7	<u>9 Mar.</u>	Node Voltage Method, Mesh Current Method	3.5 (Cont.) - 3.6	Exp #4: Current and Voltage Divider Rules		
<u>8</u>	<u>16 Mar.</u>	Capacitors, Inductors, Series and Parallel Connections	5.1 – 5.2, 5.4	Exp#5 Superposition Theorem		
	SPRING BREAK 23 March - 27 March					
9	<u>30 Mar.</u>	Sinusoidal Source, Complex Numbers, Frequency Domain (Phasor) Circuit.	6.1 – 6.3	Exp #6: Thevenin / Norton Theorems and Maximum Power Transfer		
<u>10</u>	<u>6 Apr.</u>	Frequency Domain Analysis	6.4 - 6.5	Problem Session # 2		
		Second Major Exam: Saturday 13 April	<u> 6:30-8:00PM</u>	<u>1</u>		
<u>11</u>	<u>13 Apr.</u>	Power Concepts, Average Power	6.6	Exp # 7: The Oscilloscope and Function Generator		
<u>12</u>	<u>20 Apr.</u>	Power Factor, RMS Values	6.6	Exp #8: Frequency Domain Analysis		
<u>13</u>	27 Apr.	Commercial Power Distribution, Three Phase Circuits	6.9	Exp #9: Maximum Power Transfer		
<u>14</u>	4 May	Three Phase Circuits, Star-Delta Connections	6.9	Exp #10: Average and RMS Values		
<u>15</u>	<u>11 May</u>	Review		Final Lab Exam		
	Final Exam: Sunday 26 May 12:30 PM					

Grade Distribution:

Class work*	Major I**	Major II**	Laboratory	Final Exam
15 %	15 %	15 %	20 %	35 %

^{**} Location of major exams will be reserved and posted by each instructor.

Course Outcomes

Upon the successful completion of this course, you should be able to

- 1. Apply knowledge of mathematics, science, and engineering to the analysis and design of electric circuits.
- 2. Identify, formulate, and solve engineering problems in the area of circuits.
- Use the techniques, skills, and modern programming tools such as PSPICE, necessary for engineering practice.
- 4. Participate and function within multi-disciplinary teams.
- 5. Design a system to meet desired needs within realistic constraints.

Practice problems:

HW # 1	Ch. 1:	1.3-1, 1.4-5, 1.5-5, 1.6-2, 1.6-6, 1.7-2, 1.8-2
HW # 2	Ch. 2:	2.2-5, 2.2-7, 2.3-2, 2.3-8, 2.4-3, 2.4-10, 2.5-7, 2.5-11
HW # 3	Ch. 2:	Ch.2: 2.6-4, 2.7-3, 2.7-5,
HW # 4	Ch. 3:	3.2-6, 3.2-12, 3.3-2, 3.3-4, 3.3-6, 3.3-12
HW # 5	Ch. 3:	3.5-2, 3.5-7, 3.6-2, 3.6-7
HW # 6	Ch. 5:	5.1-3, 5.1-6, 5.1-8, 5.2-3, 5.2-6, 5.2-8, 5.4-2
HW # 7	Ch. 6:	6.1-1(b,f), 6.1-2(a,f,g), 6.2-1(d,f), 6.2-5(b,d)
HW # 8	Ch. 6:	6.3-4, 6.3-7, 6.4-4, 6.4-7, 6.4-12
HW # 9	Ch. 6:	6.4-16, 6.4-17, 6.5-1, 6.5-4, 6.5-8
HW # 10	Ch. 6:	6.6-1, 6.6-5, 6.6-14, 6.6-17, 6.6-21, 6.9-4

Important Points to Remember

- Practice Problems: Practice problems are to be solved completely by the students and <u>not to be submitted</u>.
 Solutions will be posted in Blackboard CE.
- 2. **Homework**: Each instructor will assign his homework as scheduled
- 3. Quizzes: Each instructor prepares his quizzes as scheduled.
- 4. **Problem Sessions**: All problem sessions will be held during the lab periods by the lab instructors.
- 5. Lab. Makeup: No lab makeup will be allowed without an official excuse from students affairs.
- 6. <u>Attendance</u>: According to the university regulations, any student that exceeds 20% (6 lectures) of the scheduled class meeting without an official excuse will receive a grade of DN in the course (including lab sessions).
- 7. <u>Official excuses</u>: All official excuses must be submitted to the instructor <u>no later than one week of the date of the official excuse</u>. The instructor may not accept late excuses.