Ministry of Higher Education King Jahl University of Petroleum & Minerals Electrical Engineering Department

وزارة التعتام المتايا جامعة المل**ك فحهد للبنرول و المعادن** قسم الهندسة الكهربائيـة

EE 203: Electronics I

Instructors: Dr. H. Al-Zaher (sections 1. 5) Dr. M. Al-Gahtani (sections 3, 6) Mr. N. Tasadduq (sections 4) Dr. O. Hammi (sections 7) Dr. H. Ragheb (sections 8)

Examination:	Second Major Exam	
Date :	April 17, 2013	
Time:	6:30-8:00 PM	

Student Name:	
Student Number:	
Section Number:	

Problem 1	20	
Problem 2	25	
Problem 3	15	
Total	60	

Answer all questions showing all steps. More than one answer for the same problem are given zero mark.

Problem (1) [20 points]

A. Consider the circuit shown below, let $k_n^{\prime} = 100 \mu A/V^2$, $V_t = 1 V$ and $\lambda=0$. Determine the transistor ratio (**W/L**) such that $I_D = 0.5 mA$.

B. For the circuit shown below **Find I**_{D1}, I_{D2} and V_{out} assuming the following transistors parameters:

 $V_{tn} = -V_{tp} = 1$ V, $k'_p (W/L)_p = k'_n (W/L)_n = 300 \mu A/V^2$ and $\lambda = 0$.

Problem (2) [25 points]

For the transistor used in the shown common source amplifier has k_n^{\prime} W/L= μ_n CoxW/L=1mA/ V^2 , V_t =1V and λ =0.

- a) Draw the small signal circuit using the π -model.
- b) Calculate the voltage gain (Av= v_{out}/v_{sig}), input (Ri) and output (Ro) resistances of the amplifier.
- c) Determine the **DC voltages** V_{DS} and V_{GS} and hence find the **maximum output signal** swing.
- d) Rearrange the circuit to get **common-drain amplifier** source follower (remove all unnecessary components).

Problem (3) [15 points]

For the given circuit, assume active mode

- a) Find the dc currents I_C , I_B and I_E and voltages V_B , V_C and V_E .
- b) **Confirm your assumption** for the mode of operation.

